
Improving the Efficiency of
LLM-Generated Code

Dong HUANG

Introduction
• Large language models (LLMs) plays an important role in software development.

• Efficiency of the software affects the validity of the code to be deployed in
efficiency-critical environments.

• Execution time.

• Memory usage.

• Large language models (LLMs) plays an important role in software development.

• Efficiency of the software affects the validity of the code to be deployed in
efficiency-critical environments.

• Execution time.

• Memory usage.

Outline
• EffiBench: Benchmarking the Efficiency of Automatically Generated Code.

• EffiLearner: Enhancing Efficiency of Generated Code via Self-Optimization.

• Execution time profile

• Memory usage profile

EffiBench: Benchmarking the
Efficiency of Automatically

Generated Code
NeurIPS 2024

[1] https://arxiv.org/abs/2402.02037

Motivation
• Efficiency of LLM-generated code are crucial.

• Existing datasets mainly focus on the correctness of LLM-generated code, while the
efficiency results have been ignored.

• Using existing datasets to measure the efficiency of LLM-generated code exists
some problems:

• Short code snippets

• Not efficiency-critical tasks

• Small number of test cases

Dataset Construction
• Select efficiency-critical tasks from LeetCode

• Construct canonical solution

• Construct test case generator to generated 100-1000 test cases

• Dataset statistics

Efficiency Metrics
• Execution Time (ET)

• Memory Peak (MU)

• Total Memory Usage (TMU)

• Normalised Metrics:

• NET

• NMU

• NTMU

Evaluation Setup
• Models:

• CodeLlama, DeepSeek-Coder, OpenCodeInterpreter, StarCoder, WizardCoder，
Phind-CodeLlama, XwinCoder, Yi, GPT, Claude

• Machine Setup:

• Intel Xeon Platinum 8336C CPU with 128 cores, 8 * NVIDIA A100-SXM GPUs, and a
total memory capacity of 2.0TB.

• Prompt:

• Few-shot prompting

End2End
• LLM-generated code are less

efficient than canonical
solution.

• GPT-4 requires 3.12x average
execution time (ET)
compared to canonical
solution.

• In worst case, GPT-4
generated code requires
13.89x ET than canonical
solution.

Results with Identical Problems
• Similar to the results in all problems, GPT-4 generated code achieve most efficient

results.

• However, GPT-4 generated code still less efficient than canonical solution

Worst Case Analysis
• The code generated by GPT-3.5-

Turbo-0301 uses a two-dimensional
array to store intermediate results.

• In contrast, the canonical solution
employs two one-dimensional
arrays.

Summary
• We propose the first dataset used to measure the efficiency of LLM-generated

code

• We conduct an extensive evaluation of 42 LLMs on EffiBench, revealing that even
state-of-the-art LLMs (e.g. GPT-4) exhibit significant inefficiencies compared to
optimal human-written solutions

EffiLearner: Enhancing Efficiency
of Generated Code via Self-

Optimization
NeurIPS 2024

[2] https://arxiv.org/abs/2405.15189

Motivation
• The correctness of LLM-generated code are achieving near optimal results

• However, existing works demonstrate that LLM-generated code are inefficient

Self-Optimization with Overhead Profile
• Generating source code with task description

• Overhead profiling:

• Execution Time Profiling: We profile the execution time of each line in LLM-
generated code with line_profiler

• Memory Usage Profiling: We profile the memory usage of each line with
memory_profile

• Code Refinement

• Prompt Construction

Code Refinement
• Execute LLM-generated code to

obtain the overhead profiles.

• Feed overhead profiles into LLM
for code efficiency optimisation

Evaluation Setup
• Models:

• CodeLlama, DeepSeek-Coder, OpenCodeInterpreter, StarCoder, WizardCoder,
XwinCoder, GPT, Claude

• Machine Setup:

• Intel Xeon Platinum 8336C CPU with 128 cores, 8 * NVIDIA A100-SXM GPUs, and a
total memory capacity of 2.0TB.

• Prompt:

• Few-shot prompting

• Dataset:

• EffiBench

End2End
• EffiLearner improve the efficiency of

LLM-generated code.

• In OpenCodeInterpreter-1.3B, the
execution time for its generated code
decreases fin 1.60 (s) to 1.29 (s), a
reduction of 19.4% execution time.

• .The memory peak of GPT-3.5-
Turbo-0301 also decrease from 91.25
(Mb) to 36.08 (Mb), which reduces
60.5% memory peak.

Feedback of Overhead Profile
• EffiLearner achieves SOTA efficiency results when we provide both execution time

and memory usage profile

Summary
• We propose EffiLearner, a novel self-optimization framework that leverages

execution overhead profiles to guide LLMs in improving code efficiency.

• Extensive experiments demonstrate that EffiLearner significantly enhances the
efficiency of LLM-generated code, achieving substantial reductions in execution
time and memory usage.

Thanks for listening

Introduction
• Large language models (LLMs) plays an important role in software development.

• Efficiency of the software affects the validity of the code to be deployed in
efficiency-critical environments.

• Execution time.

• Memory usage.

• We benchmark and improve the efficiency of LLM-generated code with overhead
profiles.

• Execution time profile

• Memory usage profile

