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Introduction
• Large language models (LLMs) plays an important role in software development.  

• Efficiency of the software affects the validity of the code to be deployed in 
efficiency-critical environments. 

• Execution time. 

• Memory usage.
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Outline
• EffiBench: Benchmarking the Efficiency of Automatically Generated Code.  

• EffiLearner: Enhancing Efficiency of Generated Code via Self-Optimization. 

• Execution time profile 

• Memory usage profile
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Efficiency of Automatically 
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Motivation
• Efficiency of LLM-generated code are crucial. 

• Existing datasets mainly focus on the correctness of LLM-generated code, while the 
efficiency results have been ignored. 

• Using existing datasets to measure the efficiency of LLM-generated code exists 
some problems: 

• Short code snippets 

• Not efficiency-critical tasks 

• Small number of test cases



Dataset Construction
• Select efficiency-critical tasks from LeetCode 

• Construct canonical solution 

• Construct test case generator to generated 100-1000 test cases 

• Dataset statistics



Efficiency Metrics
• Execution Time (ET) 

• Memory Peak (MU) 

• Total Memory Usage (TMU) 

• Normalised Metrics: 

• NET  

• NMU 

• NTMU



Evaluation Setup
• Models: 

• CodeLlama, DeepSeek-Coder, OpenCodeInterpreter, StarCoder, WizardCoder， 
Phind-CodeLlama, XwinCoder, Yi, GPT, Claude 

• Machine Setup: 

• Intel Xeon Platinum 8336C CPU with 128 cores, 8 * NVIDIA A100-SXM GPUs, and a 
total memory capacity of 2.0TB. 

• Prompt: 

• Few-shot prompting



End2End
• LLM-generated code are less 

efficient than canonical 
solution. 

• GPT-4 requires 3.12x average 
execution time (ET) 
compared to canonical 
solution. 

• In worst case, GPT-4 
generated code requires 
13.89x ET than canonical 
solution.



Results with Identical Problems
• Similar to the results in all problems, GPT-4 generated code achieve most efficient 

results. 

• However, GPT-4 generated code still less efficient than canonical solution



Worst Case Analysis
• The code generated by GPT-3.5-

Turbo-0301 uses a two-dimensional 
array to store intermediate results.  

• In contrast, the canonical solution 
employs two one-dimensional 
arrays.



Summary
• We propose the first dataset used to measure the efficiency of LLM-generated 

code 

• We conduct an extensive evaluation of 42 LLMs on EffiBench, revealing that even 
state-of-the-art LLMs (e.g. GPT-4) exhibit significant inefficiencies compared to 
optimal human-written solutions
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Motivation
• The correctness of LLM-generated code are achieving near optimal results 

• However, existing works demonstrate that LLM-generated code are inefficient



Self-Optimization with Overhead Profile
• Generating source code with task description 

• Overhead profiling: 

• Execution Time Profiling: We profile the execution time of each line in LLM-
generated code with line_profiler 

• Memory Usage Profiling: We profile the memory usage of each line with 
memory_profile 

• Code Refinement 

• Prompt Construction



Code Refinement
• Execute LLM-generated code to 

obtain the overhead profiles. 

• Feed overhead profiles into LLM 
for code efficiency optimisation



Evaluation Setup
• Models: 

• CodeLlama, DeepSeek-Coder, OpenCodeInterpreter, StarCoder, WizardCoder, 
XwinCoder, GPT, Claude 

• Machine Setup: 

• Intel Xeon Platinum 8336C CPU with 128 cores, 8 * NVIDIA A100-SXM GPUs, and a 
total memory capacity of 2.0TB. 

• Prompt: 

• Few-shot prompting 

• Dataset: 

• EffiBench



End2End
• EffiLearner improve the efficiency of 

LLM-generated code. 

• In OpenCodeInterpreter-1.3B, the 
execution time for its generated code 
decreases fin 1.60 (s) to 1.29 (s), a 
reduction of 19.4% execution time. 

• .The memory peak of GPT-3.5-
Turbo-0301 also decrease from 91.25 
(Mb) to 36.08 (Mb), which reduces 
60.5% memory peak.



Feedback of Overhead Profile
• EffiLearner achieves SOTA efficiency results when we provide both execution time 

and memory usage profile



Summary
• We propose EffiLearner, a novel self-optimization framework that leverages 

execution overhead profiles to guide LLMs in improving code efficiency. 

• Extensive experiments demonstrate that EffiLearner significantly enhances the 
efficiency of LLM-generated code, achieving substantial reductions in execution 
time and memory usage.



Thanks for listening 
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• We benchmark and improve the efficiency of LLM-generated code with overhead 
profiles. 

• Execution time profile 

• Memory usage profile


