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Abstract

As large language models (LLMs) play an increasingly important role in code1

generation, enhancing both correctness and efficiency has become crucial. Current2

methods primarily focus on correctness, often overlooking efficiency. To address3

this gap, we introduce EFFI-CODE to improve both aspects by fine-tuning LLMs4

on a high-quality dataset comprising correct and efficient code samples. Our5

methodology involves leveraging multiple LLMs to generate diverse candidate6

code solutions for various tasks across different programming languages. We then7

evaluate these solutions by directly measuring their execution time and memory8

usage through local execution. The code solution with the lowest execution time9

and memory consumption is selected as the final output for each task. Experimental10

results demonstrate significant improvements when fine-tuning with EFFI-CODE.11

For instance, Qwen2.5-Coder-7B-Instruct’s pass@1 score increases from 44.8%12

to 57.7%, while the average execution time for correct tasks decreases by 48.4%.13

EFFI-CODE offers a scalable and effective solution for advancing AI-driven code14

generation, benefiting both software development and computational problem-15

solving.16

1 Introduction17

Large language models (LLMs) have recently made significant strides across various tasks [OpenAI,18

2023, Anil et al., 2023, Anthropic, 2024, Meta, 2024], including code-related applications like code19

completion [Chen et al., 2021, Austin et al., 2021], debugging [Haque et al., 2022, Chen et al., 2023],20

and translation[Rozière et al., 2020, Ahmad et al., 2023]. Before deploying LLMs into integrated21

development environments (IDEs) as tools, it is crucial to ensure that the generated code meets the22

required efficacy standards. To address this, researchers have explored various datasets to fine-tune23

LLMs, thereby improving the efficacy of LLM-generated code [Ouyang et al., 2022, Wei et al.,24

2022]. For example, Code Alpaca [Chaudhary, 2023] utilized the Self-Instruct framework [Wang25

et al., 2023] to synthesize data, while WizardCoder [Luo et al., 2024] employed the Evol-Instruct26

technique [Xu et al., 2024] to generate heuristic prompts for diverse solutions. Additionally, OSS-27

Instruct [Wei et al., 2024b] created new coding problems using open-source snippets with LLMs,28

and Octopack [Muennighoff et al., 2024] focused on curating high-quality Git commit messages that29

resemble natural language instructions. These fine-tuning efforts have led to increased correctness in30

LLM-generated code.31

However, existing works primarily focus on enhancing the correctness of LLM-generated code while32

neglecting to optimize its efficiency. As a result, the efficiency of such code often falls short compared33

to canonical solutions written by human developers. Recent studies [Shi et al., 2024, Niu et al., 2024,34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Code
Corpus

LLMs

Sampling
Response

Response

Response

Candidate Solutions

Overhead

Execute
Time: 0.008s
Mem: 200Mb

Time: 0.3s
Mem: 2000Mb

Time: 0.06s
Mem: 300Mb

Profiles

Select

Solutions

EFFICODE data

Mining

Candidate
Tasks

Description

Task Solution

Task Cases 
(Augmented)

Code Tasks

Figure 1: Overview of the construction pipeline for EFFI-CODE: We begin by collecting the initial
EFFI-CODE from different open-source datasets. Starting with the original code, we require multiple
LLMs to generate candidate solutions, using test cases to profile execution overhead, and use the
most efficient solution generated by LLMs as the solution for each task. We then have our final
fine-tuning dataset, EFFI-CODE, which consists of optimized code and rich metadata, designed to
train models for generating efficient code.

Du et al., 2024, Huang et al., 2024a] also point out that LLM-generated code typically exhibits lower35

efficiency in execution time and memory usage. For instance, on the EffiBench benchmark [Huang36

et al., 2024b], even the most advanced LLMs, such as GPT-4-Turbo, produced less efficient code, with37

average and worst-case execution times being 1.69 and 45.49 times longer than those of canonical38

solutions, respectively. Efficiency is crucial because inefficient code consumes more computational39

resources, leading to higher energy consumption and increased operational costs. This is particularly40

important in the context of sustainability, as the demand for computing power continues to grow,41

and reducing the environmental impact of large-scale computations becomes a pressing concern.42

Furthermore, inefficient code may be impractical for use in resource-constrained environments, such43

as mobile devices or embedded systems, where both energy and processing power are limited. This44

underscores the urgent need to develop new methods that can enhance both the correctness and45

efficiency of LLM-generated code.46

In this paper, we introduce the dataset EFFI-CODE, aimed at fine-tuning LLMs to improve both code47

efficiency and correctness. We begin by aggregating source code from existing open-source datasets.48

This is followed by a rigorous preprocessing and cleaning process, coupled with the generation of49

test cases for each task to evaluate code efficiency. We leverage multiple LLMs to generate diverse50

candidate code solutions for various tasks across different programming languages. We then evaluate51

these solutions by directly measuring their execution time and memory usage through local execution.52

Code solutions with the lowest execution time and memory consumption are selected as the final53

output. The resulting optimized code, along with its associated metadata, forms EFFI-CODE, which54

serves as a high-quality resource for training LLMs.55

Extensive experiments demonstrate that fine-tuning LLMs with EFFI-CODE improves both cor-56

rectness and efficiency. For example, the fine-tuned Qwen2.5-Coder-7B-Instruct [DeepSeekAI,57

2023] increases the pass@1 from 44.8% and 76.2% to 57.7% and 78.0% on EffiBench and Hu-58

manEvalPlus, while also reducing the average execution time from 0.31 seconds to 0.16 seconds —59

representing a 48.4% reduction in execution time overhead on EffiBench. Compared to PIE [Shypula60

et al., 2024], which increases the pass@1 from 12.2% to 19.5% on HumanEvalPlus, the pass@1 of61

CodeLlama-7B [Rozière et al., 2023] fine-tuned with EFFI-CODE further increases to 31.1%. In62

addition, EFFI-CODE decreases the execution time by 46.2% while PIE decreases it by 23.1%. We63

will fully open-source EFFI-CODE and the source code to facilitate research. To conclude, this paper64

makes the contributions:65

• We propose a versatile framework for constructing code generation datasets with efficient66

solutions, adaptable to various programming languages and sources.67

• We introduce EFFI-CODE, to the best of our knowledge, it is the first instruction-tuning68

dataset designed to improve the efficiency of LLM-generated code, facilitating fine-tuning69

for more efficient code generation.70

• We fine-tune various widely used LLMs using EFFI-CODE, demonstrating improvements in71

both correctness and efficiency.72
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def singleNumber(num):
for i in range(len(num)):

if num.count(num[i]) == 1:
return num[i]

def singleNumber(num):
a = b = 0
for c in num:

aa = (~a & b & ~c) | (a & ~b & ~c)
bb = ~a & (b ^ c)
a, b = aa, bb

return b

def singleNumber(num):
return reduce(operator.xor, num)
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Figure 2: Examples of codes with levels of efficiency: The first solution features high memory usage
and long execution time, the second achieves lower memory usage but still has a long execution time,
and the third is optimized for both low memory usage and short execution time.

2 Related Works73

2.1 LLMs for Code74

The increasing popularity of LLMs for code generation has coincided with the growing availability75

of open-source code repositories and the need to boost developer productivity. Initial efforts focused76

on training models specifically for coding tasks, such as CodeT5 [Wang et al., 2021], AlphaCode [Li77

et al., 2022], CodeGen [Nijkamp et al., 2023], InCoder [Fried et al., 2023], StarCoder [Li et al., 2023a],78

SantaCoder [Allal et al., 2023], and DeepSeek-Coder [DeepSeekAI, 2023]. Contrastingly, models79

such as Codex [Chen et al., 2021] and CodeLlama [Rozière et al., 2023] represent a subsequent stride,80

being fine-tuned from foundation models [Brown et al., 2020, Touvron et al., 2023]. These code LLMs81

have been applied to various tasks, including code generation [Chen et al., 2021, Dai et al., 2024],82

program repair [Haque et al., 2022, Jiang et al., 2023], automated testing [Lemieux et al., 2023, Deng83

et al., 2023], code translation [Rozière et al., 2020, Ahmad et al., 2023], type prediction [Mir et al.,84

2022, Wei et al., 2023], and code summarization [Hasan et al., 2021, Ahmed and Devanbu, 2022].85

While LLMs have achieved impressive results in code generation tasks like HumanEval [Chen et al.,86

2021] and MBPP [Austin et al., 2021], their efficiency has received less attention. Recent studies [Shi87

et al., 2024, Huang et al., 2024b, Niu et al., 2024] have shown that LLM-generated code exhibits88

lower efficiency in terms of execution time and memory usage compared to canonical solutions.89

These findings highlight the need for further research and development to improve the efficiency90

of LLM-generated code. In this work, we propose the first fine-tuning method that significantly91

improves both the efficiency and correctness of code generated by various LLMs.92

2.2 Instruction Tuning for Code93

Instruction tuning has proven effective in enhancing the usability and overall performance of LLMs94

across various language tasks [Ouyang et al., 2022, Wei et al., 2022, Zhao et al., 2024]. This approach95

has been extended to the domain of code generation. The core challenge is the acquisition of high-96

quality instructional data, which is often labor-intensive. To address this, recent research has focused97

on developing methods to generate synthetic instruction data. Studies have shown that textbook-98

quality synthetic data alone can improve a model’s coding and reasoning capabilities [Gunasekar99

et al., 2023, Li et al., 2023b]. One early effort was Self-Instruct [Wang et al., 2023], which utilized100

LLMs to generate synthetic instruction-response pairs using carefully crafted prompts. The same101

LLM was then instruction-tuned on this synthetic data. Code Alpaca [Chaudhary, 2023] applied the102

Self-Instruct approach with GPT models, tailoring it specifically for code generation, editing, and103

optimization tasks. Building upon this, WizardCoder [Luo et al., 2024] adapted the Evol-Instruct104

technique [Xu et al., 2024] to the coding domain by designing heuristic prompts to create more105

complex and diverse synthetic data. OSS-Instruct [Wei et al., 2024b] took a different approach by106

leveraging LLMs to automatically generate new coding problems inspired by random code snippets107

from open-source repositories. In contrast, Octopack [Muennighoff et al., 2024] focused on collecting108

and filtering high-quality Git commit messages that resemble natural language instructions. While109

these existing methods primarily emphasize generating correct code, EFFI-CODE explores the use of110

fine-tuning to improve code efficiency. Our method is orthogonal to existing synthetic techniques,111

offering the potential for combination to further enhance the coding capabilities of LLMs.112
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Figure 3: Correlation of the efficiency of the automatically generated code and the LLM code train
set.

3 EFFI-CODE: Fine-Tuning For Efficiency113

3.1 Preliminary Study114

We begin by investigating how the efficiency of training data influences the efficiency of code115

generated by LLMs. Following prior works [Huang et al., 2024b], we evaluate code efficiency116

using three metrics: Execution Time (ET), Max Memory Usage (MU), and Total Memory Usage117

(TMU). Our hypothesis is that training LLMs on efficient code will lead to the generation of more118

efficient code. To test this hypothesis, we synthesized multiple training datasets with varying levels119

of efficiency and used them to train different LLMs. The efficiency of the generated code was then120

measured in a controlled environment using ET, MU, and TMU. The training datasets included both121

efficient and inefficient code samples to ensure a comprehensive range of efficiencies. The results,122

presented in Figure 3, reveal strong positive correlations between the efficiency of the training data123

and the efficiency of the generated code. Specifically, the correlation for ET is 0.972, for MU it is124

0.950, and for TMU it is 0.986. These high correlation coefficients indicate that as the efficiency of125

the training data increases, so does the efficiency of the generated code. This study demonstrates126

that training LLMs on efficient code significantly enhances the efficiency of the generated code. The127

strong correlations across all three metrics support the hypothesis that the efficiency of the training128

data is a critical factor in improving the performance of LLM-generated code. These findings inspire129

further exploration of specific techniques for optimizing training datasets to maximize code efficiency.130

3.2 Dataset Construction131

Curation Process Figure 1 illustrates an overview of the process for constructing the EFFI-CODE132

dataset for fine-tuning. The first step involves collecting candidate code generation tasks from nine133

open-source datasets available on the HuggingFace platform1. For each task, we aim to construct134

a more efficient solution compared to the initial solutions provided by the open-source datasets.135

Our approach shares similarities with existing works Du et al. [2024], Huang et al. [2024a], where136

researchers execute LLM-generated code locally and analyze the execution time and memory usage.137

However, our construction pipeline differs in that it utilizes multiple LLMs (e.g., DeepSeek-Coder138

and GPT-4o) to generate multiple candidate code solutions for each task in our candidate task set. We139

then directly calculate the execution time and memory usage for each generated code solution by140

executing them in local environments. The code with the lowest execution time and memory usage is141

selected as the final code for each task. For example, as shown in Figure 2, we directly select the142

code on the right as the final code.143

Data Sources We collect the candidate tasks from the open-source code LLM training sets, which144

include SelfCodeAlign (SelfCodeAlign; Wei et al. 2024a), CodeFeedback-Filtered-Instruction (Code-145

Feed; MAP 2023), Tested-143k-Python-Alpaca (Alpaca; Vezora 2023), Glaive-Code-Assistant146

(Glaive; Computer 2023), Magicoder-Evol-Instruct-110K (Evol-Ins; UIUC 2023a), Dolphin-Coder147

(Dolphin; Computations 2023), Magicoder-OSS-Instruct-75K (Oss-Ins; UIUC 2023b), Self-OSS-148

Instruct-SC2-Exec-Filter-50K (Self-Oss; BigCode 2023), and Apps [Hendrycks et al., 2021]. To149

collect the candidate tasks, all Python, C++, Java, Rust, and Go functions are extracted from the150

1https://huggingface.co/docs/datasets
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Table 1: Distribution of tasks in the constructed EFFI-CODE for different programming languages.

Dataset APPS Alpaca CodeFeed Glaive Evol-Ins Dolphin Oss-Ins Self-Oss SelfCodeAlign Total

Python 1001 2920 1387 32 1250 1958 76 827 24038 33489
CPP - 3 1257 2675 3439 1186 2985 2 - 11547
Java - 1 2082 3278 4692 1746 2927 - - 14726
Rust - - 26 187 467 500 3090 - - 4270
Go - 1 47 277 776 549 28 - - 1678

aforementioned open-source datasets. Following the filtering instructions of SelfCodeAlign Wei et al.151

[2024a], a series of filtering rules are applied to ensure the code quality of the candidate tasks. After152

applying the filtering process, a total of 65k tasks were collected from an initial pool of about 790k153

candidate tasks.154
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Figure 4: Efficiency distribution of the Python subset collected from Hugging Face. The figure
shows the distribution of execution time, memory usage, and max memory peak for both inefficient
(task-provided solution) and efficient solutions in the EFFI-CODE. The inefficient solutions have
higher overheads for all three metrics than the efficient ones.

3.3 Dataset Statistics155

As shown in Table 1, coding problems in EFFI-CODE have been collected from nine datasets, resulting156

in a total of 65,710 tasks across five programming languages: Python, C++, Java, Rust, and Go. The157

dataset encompasses a diverse range of coding challenges, ensuring a comprehensive coverage of158

various programming concepts and problem-solving techniques. Python has the highest representation159

in EFFI-CODE, with 33,489 tasks sourced from all nine datasets. This extensive collection of Python160

tasks allows for effective fine-tuning of LLMs to generate efficient and optimized Python code. C++161

and Java also have significant contributions, with 11,547 and 14,726 tasks, respectively. These tasks162

are primarily sourced from CodeFeed, Glaive, Evol-Ins, Dolphin, and Oss-Ins datasets, providing163

a robust foundation for fine-tuning LLMs in these popular programming languages. Rust and Go,164

although having relatively fewer tasks compared to Python, C++, and Java, still have a substantial165

presence in EFFI-CODE. With 4,270 Rust tasks and 1,678 Go tasks, the dataset enables fine-tuning of166

LLMs to generate efficient code in these modern and rapidly growing programming languages.167

Figure 4 illustrates the efficiency distribution of the dataset for three key metrics: execution time,168

memory usage, and max memory peak, which compares the distribution of these metrics for both169

inefficient (canonical solutions provided by the nine datasets) and efficient solutions in the EFFI-170

CODE. For execution time, the inefficient solutions have a mean value of 1.14s, while the efficient171

solutions have a significantly lower mean of 0.31s, which indicates that the optimization process has172

successfully reduced the execution time of the code, resulting in more efficient solutions. Similarly,173

the memory usage and max memory peak also show a notable difference between inefficient and174

efficient solutions. For example, inefficient solutions have a mean memory usage of 26.50MBs, while175

efficient solutions have a much lower mean of 6.03MBs.176

The efficiency distribution visualization highlights the effectiveness of the optimization process177

in creating more efficient solutions across all three metrics. By carefully curating tasks through178
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the multi-step cleaning process and applying SOAP optimization, we have created a dataset that179

is valuable for training models to generate efficient code. EFFI-CODE provides a diverse range180

of optimized coding problems, enabling researchers and practitioners to advance the field of code181

optimization using LLMs.182

4 Experiment183

Datasets and Models We evaluate the efficiency and correctness of LLM-generated code on five184

code generation benchmarks, i.e., EffiBench Huang et al. [2024b], EvalPlus (HumanEvalPlus and185

MBPPPlus) Liu et al. [2024], DS-1000 Lai et al. [2023], EvoEval Xia et al. [2024], and HumanEval-X186

Zheng et al. [2023]. We finetune eight open-source LLMs with EFFI-CODE, including CodeLlama-187

7b-bf, DeepSeek-Coder-6.7B base and instruct model [DeepSeekAI, 2023], Qwen2.5-Code-7B base188

and instruct model [Hui et al., 2024], and Qwen2.5-Coder (1.5B, 3B, and 14B).189

Fine-tuning Setup We use Llama-factory [Zheng et al., 2024] to fully fine-tune all LLMs with the190

same setup and train the models using EFFI-CODE. The maximum sequence length is set to 2048191

tokens. We use a batch size of 128 and set the learning rate to 5e-6 with a cosine learning rate192

scheduler and a warmup ratio of 0.03. We fine-tune all LLMs for 4 epochs under the bf16 data type.193

Table 2: Code efficiency and pass@1 of LLMs trained with EFFI-CODE on EffiBench using greedy
decoding. The percentage in the brackets indicates the extent of the reduction for each respective
item. Overlap means the percentage of correct tasks addressed by both EFFI-CODE finetuned LLM
and original LLM in total tasks of the dataset. We provide a case example in Figure 5 to demonstrate
how EFFI-CODE fine-tuned LLM improves the efficiency of LLM-generated code.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑
CodeLlama-7b-hf 0.24 1.48 141.91 4.78 149.23 73.82 8.2 15.0
+ SFT 0.20 (16.7%) 1.27 (14.2%) 80.86 (43.0%) 2.26 (52.7%) 87.09 (41.6%) 42.66 (42.2%) 8.2 17.6
deepseek-coder-6.7b-base 0.37 2.62 36.94 1.04 17.26 2.74 47.1 54.4
+ SFT 0.21 (43.2%) 1.42 (45.8%) 37.11 (-0.5%) 1.04 (0.0%) 11.97 (30.6%) 2.10 (23.4%) 47.1 59.3
deepseek-coder-6.7b-instruct 0.34 2.56 47.26 1.45 30.05 9.97 36.0 44.4
+ SFT 0.22 (35.3%) 1.71 (33.2%) 36.31 (23.2%) 1.00 (31.0%) 9.48 (68.5%) 2.11 (78.8%) 36.0 51.7
Qwen2.5-Coder-7B-Instruct 0.31 2.35 31.66 1.00 11.00 2.15 37.2 44.8
+ SFT 0.16 (48.4%) 1.12 (52.3%) 31.67 (-0.0%) 1.00 (0.0%) 8.28 (24.7%) 1.18 (45.1%) 37.2 57.7
Qwen2.5-Coder-1.5B 0.40 2.95 35.34 1.03 15.68 3.51 27.1 39.6
+ SFT 0.22 (45.0%) 1.60 (45.8%) 34.58 (2.2%) 1.00 (2.9%) 9.09 (42.0%) 1.98 (43.6%) 27.1 41.7
Qwen2.5-Coder-3B 0.43 2.73 48.73 1.00 33.88 2.59 16.9 31.2
+ SFT 0.23 (46.5%) 1.60 (41.4%) 49.18 (-0.9%) 1.00 (0.0%) 18.31 (46.0%) 1.98 (23.6%) 16.9 34.2
Qwen2.5-Coder-7B 0.26 1.81 38.88 1.01 18.63 3.01 41.4 50.1
+ SFT 0.17 (34.6%) 1.23 (32.0%) 38.61 (0.7%) 1.00 (1.0%) 10.82 (41.9%) 1.32 (56.1%) 41.4 57.3
Qwen2.5-Coder-14B 0.36 2.73 32.41 1.00 12.59 2.57 50.1 57.5
+ SFT 0.15 (58.3%) 1.14 (58.2%) 32.41 (0.0%) 1.00 (0.0%) 6.80 (46.0%) 1.23 (52.1%) 50.1 63.6

Table 3: Code efficiency and pass@1 of LLMs trained with EFFI-CODE on HumanEval-EvalPlus.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

HumanEvalPlus

deepseek-coder-6.7b-base 0.43 1.04 67.45 1.00 28.23 1.02 7.3 7.3
+ SFT 0.42 (2.3%) 1.00 (3.8%) 67.37 (0.1%) 1.00 (0.0%) 27.90 (1.2%) 1.02 (0.0%) 7.3 64.6
deepseek-coder-6.7b-instruct 0.54 2.27 61.64 0.98 20.18 2.30 42.1 47.6
+ SFT 0.37 (31.5%) 1.45 (36.1%) 61.58 (0.1%) 0.98 (0.0%) 16.48 (18.3%) 1.78 (22.6%) 42.1 72.6
Qwen2.5-Coder-7B 0.35 1.23 61.77 0.98 15.25 1.39 36.6 40.2
+ SFT 0.29 (17.1%) 0.96 (22.0%) 61.70 (0.1%) 0.98 (0.0%) 12.18 (20.1%) 0.96 (30.9%) 36.6 78.7
Qwen2.5-Coder-7B-Instruct 0.52 2.05 63.38 0.99 20.17 1.96 67.7 76.2
+ SFT 0.32 (38.5%) 1.08 (47.3%) 63.35 (0.0%) 0.99 (0.0%) 15.15 (24.9%) 1.16 (40.8%) 67.7 78.0

MBPPPlus

deepseek-coder-6.7b-base 0.49 1.64 58.90 1.00 17.27 1.62 55.3 63.2
+ SFT 0.31 (36.7%) 0.97 (40.9%) 58.99 (-0.2%) 1.00 (0.0%) 10.27 (40.5%) 0.96 (40.7%) 55.3 65.9
deepseek-coder-6.7b-instruct 0.43 1.65 59.03 1.00 14.39 1.65 59.0 65.3
+ SFT 0.31 (27.9%) 1.01 (38.8%) 58.97 (0.1%) 1.00 (0.0%) 10.35 (28.1%) 1.02 (38.2%) 59.0 67.5
Qwen2.5-Coder-7B 0.48 1.70 58.89 0.99 17.00 1.79 59.5 60.1
+ SFT 0.31 (35.4%) 0.96 (43.5%) 58.98 (-0.2%) 0.99 (0.0%) 10.33 (39.2%) 0.94 (47.5%) 59.5 63.2
Qwen2.5-Coder-7B-Instruct 0.46 1.68 64.90 1.00 23.99 1.66 63.2 68.0
+ SFT 0.30 (34.8%) 0.96 (42.9%) 68.31 (-5.3%) 1.00 (0.0%) 16.91 (32.4%) 0.95 (42.8%) 63.2 70.6

4.1 Evaluation of Python Code194

To comprehensively demonstrate the efficiency and correctness of automatically generated code by195

LLMs with the SFT of EFFI-CODE, we first provide the evaluation of the LLMs in generating Python196

code, where LLMs are asked to create Python code based on natural language or function signatures197

with docstrings.198
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EffiBench is a benchmark used to measure the efficiency and correctness of LLM-generated code in199

LeetCode tasks. To ensure that the efficiency of LLM-generated code can be measured, the authors200

construct 100 tests for each task to provide enough testing time. As shown in Table 2, we can observe201

that for all LLMs, the efficiency of the LLM-generated code has been improved after fine-tuning202

with EFFI-CODE. For example, the average execution time (ET) for the correct code generated by203

Qwen2.5-Coder-7B-Instruct and its EFFI-CODE fine-tuned version decreases from 0.31 (s) to 0.16204

(s), a reduction of 48.4%. Similarly, the total memory usage (TMU) of LLM-generated code also205

shows significant decreases. For instance, the TMU of DeepSeek-Coder-6.7B-Instruct decreases206

from 30.05 (Mb*s) to 9.48 (Mb*s), a larger reduction than the decrease in average execution time for207

the correct code generated by the same model, which only reduces by 35.3% from 0.34 (s) to 0.22208

(s). This indicates that during code generation, both the execution time and memory usage of the209

EFFI-CODE fine-tuned-LLM-generated code have been improved compared to the code generated by210

the original models. Furthermore, the memory usage/peak (MU) of DeepSeek-Coder-6.7B-Instruct211

generated code decreases from 47.26 (Mb) to 36.31 (Mb), a reduction of 23.2%, ensuring that the212

LLM-generated code can be deployed in memory-constrained scenarios such as embedded systems213

or edge devices.214

Interestingly, we observe that compared to the MU, ET is more widely optimized across all models.215

This suggests that EFFI-CODE fine-tuning has a more significant impact on reducing the execution216

time of the generated code than on reducing its memory footprint. Nevertheless, the improvements217

in execution time and memory usage demonstrate the effectiveness of EFFI-CODE in enhancing the218

efficiency of LLM-generated code.219

Table 4: Code efficiency and pass@1 of Qwen2.5-Coder-7B-Instruct and deepseek-coder-6.7b-
instruct fine-tuned using SFT with the EFFI-CODE for the EvoEval dataset.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

EvoEval_tool_use

Qwen2.5-Coder-7B-Instruct 0.35 1.80 59.11 1.00 11.22 1.74 33.0 43.0
+ SFT 0.20 (42.9%) 0.98 (45.6%) 59.08 (0.1%) 1.00 (0.0%) 6.55 (41.6%) 0.99 (43.1%) 33.0 53.0
deepseek-coder-6.7b-instruct 0.41 1.83 74.88 1.00 31.51 1.74 44.0 54.0
+ SFT 0.24 (41.5%) 0.99 (45.9%) 74.77 (0.1%) 1.00 (0.0%) 26.50 (15.9%) 1.00 (42.5%) 44.0 55.0

EvoEval_subtle

Qwen2.5-Coder-7B-Instruct 0.40 1.49 70.46 1.00 29.15 1.46 48.0 55.0
+ SFT 0.33 (17.5%) 1.11 (25.5%) 70.47 (-0.0%) 1.00 (0.0%) 28.30 (2.9%) 1.17 (19.9%) 48.0 72.0
deepseek-coder-6.7b-instruct 0.45 1.97 59.06 0.99 17.01 2.00 50.0 56.0
+ SFT 0.30 (33.3%) 1.32 (33.0%) 58.93 (0.2%) 0.99 (0.0%) 11.19 (34.2%) 1.31 (34.5%) 50.0 69.0

EvoEval_creative

Qwen2.5-Coder-7B-Instruct 0.51 2.16 62.71 1.00 24.21 2.39 32.0 44.0
+ SFT 0.37 (27.5%) 1.45 (32.9%) 62.69 (0.0%) 1.00 (0.0%) 21.10 (12.8%) 1.82 (23.8%) 32.0 44.0
deepseek-coder-6.7b-instruct 0.42 1.71 61.88 1.00 15.91 1.62 27.0 31.0
+ SFT 0.26 (38.1%) 0.99 (42.1%) 61.75 (0.2%) 1.00 (0.0%) 10.86 (31.7%) 0.98 (39.5%) 27.0 41.0

HumanEvalPlus and MBPPPlus As shown in Table 3, we observe that almost all LLMs achieve220

better efficiency and higher correctness after being fine-tuned with EFFI-CODE. Take HumanEvalPlus221

as an example, the average execution time (ET) for correct code generated by Qwen2.5-Coder-7B-222

Instruct and its fine-tuned version decreases from 0.52 (s) to 0.32 (s), a reduction of 38.5%. These223

improvements demonstrate the effectiveness of EFFI-CODE in optimizing the efficiency of LLM-224

generated code. Moreover, the pass@1 of Qwen2.5-Coder-7B increases from 40.2% to 78.7%, an225

improvement of 38.5% after fine-tuning with EFFI-CODE. This indicates that the fine-tuned models226

not only generate more efficient code but also produce correct code more frequently. Similar to227

the results in HumanEvalPlus, the efficiency and correctness of EFFI-CODE fine-tuned LLMs also228

improve in the MBPPPlus dataset. For instance, the average execution time for correct code generated229

by deepseek-coder-6.7b-base decreases by 36.7%, and the total memory usage (TMU) decreases by230

40.5% after fine-tuning.231

Table 5: Code efficiency and pass@1 of Qwen2.5-Coder-7B-Instruct and deepseek-coder-6.7b-
instruct fine-tuned using SFT with the EFFI-CODE for the DS-1000 dataset.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

Qwen2.5-Coder-7B-Instruct 1.2668 1.0102 447.7101 1.0148 6.831366 1.0175 9.30 17.00
+ SFT 1.2593 (0.8%) 1.0041 (1.0%) 447.0711 (0.1%) 1.0134 (0.0%) 6.7694 (0.9%) 1.0081 (1.0%) 9.30 35.70
deepseek-coder-6.7b-instruct 1.3154 1.0536 450.2792 1.0206 7.204722 1.0731 29.10 37.50
+ SFT 1.2587 (4.5%) 1.0082 (3.8%) 441.7553 (1.9%) 1.0013 (2.0%) 6.8022 (5.6%) 1.0132 (5.6%) 29.10 37.50
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Table 6: Code efficiency and pass@1 of Qwen2.5-Coder-7B-Instruct and deepseek-coder-6.7b-
instruct fine-tuned using SFT with the EFFI-CODE for the HumanEval-X (CPP and Java) dataset.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

CPP

Qwen2.5-Coder-7B-Instruct 0.0015 1.3973 1.5223 1.9489 0.000013 5.195024 4.27 7.32
+ SFT 0.0009 (37.1%) 1.0138 (27.4%) 0.8739 (42.6%) 1.0585 (45.7%) 0.000006 (53.8%) 2.784936 (46.4%) 4.27 48.17
deepseek-coder-6.7b-instruct 0.0015 1.2417 1.2991 1.0731 0.000010 2.078790 4.27 14.63
+ SFT 0.0008 (45.2%) 0.5312 (57.2%) 0.6496 (50.0%) 0.4289 (60.0%) 0.000006 (40.0%) 0.543047 (73.9%) 4.27 40.24

Java

Qwen2.5-Coder-7B-Instruct - - - - - - - -
+ SFT 0.0082 0.2037 8.5926 0.1918 0.002996 0.1859 - 57.93
deepseek-coder-6.7b-instruct 0.0076 0.1921 8.1062 0.1789 0.002731 0.180034 6.71 14.63
+ SFT 0.0048 (36.5%) 0.1231 (35.9%) 4.0142 (50.5%) 0.0908 (49.2%) 0.001900 (30.4%) 0.118972 (33.9%) 6.71 57.93

Table 7: Efficiency comparison of different methods on the HumanEvalPlus dataset. We use the
fine-tuned CodeLlama-7b-hf by PIE and Mercury as the baselines to measure the improvement of
EFFI-CODE fine-tuned version.

Method ET NET MU NMU TMU NTMU overlapped pass@1

PIE 0.30 (23.1%) 1.47 (24.2%) 61.39 (0.5%) 1.00 (0.0%) 11.28 (11.7%) 1.68 (8.2%) 9.8 19.5
Ours 0.21 (46.2%) 1.03 (46.9%) 61.33 (0.6%) 1.00 (0.0%) 7.17 (43.9%) 1.04 (43.2%) 9.8 31.1

Mercury 0.31 (20.5%) 1.51 (22.2%) 61.94 (-0.4%) 1.00 (0.0%) 10.24 (19.9%) 1.47 (19.7%) 4.3 9.1
Ours 0.21 (46.2%) 1.01 (47.9%) 61.73 (-0.1%) 1.00 (0.0%) 6.95 (45.6%) 0.98 (46.4%) 4.3 31.1

EvoEval includes 828 programming problems created by prompting GPT-4 to evolve original232

HumanEval tasks across 5 semantic-altering and 2 semantic-preserving benchmarks, each of which233

has 100 problems. We conduct experiments on the Tool_Use, Subtle, and Creative benchmarks to234

evaluate the performance of Qwen2.5-Coder-7B-Instruct and deepseek-coder-6.7b-instruct fine-tuned235

with EFFI-CODE. As shown in Table 4, both models demonstrate significant improvements in code236

efficiency after fine-tuning with EFFI-CODE. For the Tool_Use benchmark, the average execution237

time (ET) for correct code generated by Qwen2.5-Coder-7B-Instruct decreases by 42.9%, and the total238

memory usage (TMU) decreases by 41.6% after fine-tuning. Similarly, deepseek-coder-6.7b-instruct239

achieves a 41.5% reduction in ET and a 15.9% reduction in TMU. In the Subtle benchmark, after240

fine-tuning, Qwen2.5-Coder-7B-Instruct and deepseek-coder-6.7b-instruct exhibit 17.5% and 33.3%241

reductions in ET, respectively, after fine-tuning. The normalized total memory usage (NTMU) also242

decreases by 19.9% and 34.5% for the two models. Moreover, the pass@1 rate improves significantly,243

with Qwen2.5-Coder-7B-Instruct increasing from 55.0% to 72.0% and deepseek-coder-6.7b-instruct244

increasing from 56.0% to 69.0%. For the Creative benchmark, Qwen2.5-coder-7B-instruct and245

deepseek-coder-6.7b-instruct achieve 27.5% and 38.1% reductions in ET, respectively, after fine-246

tuning. The NTMU also decreases by 23.8% and 39.5% for the two models. The pass@1 rate247

remains the same for Qwen2.5-Coder-7B-Instruct at 44.0% but improves from 31.0% to 41.0% for248

deepseek-coder-6.7b-instruct.249

4.2 Data Science Programming250

DS-1000 is a data science benchmark consisting of 1000 realistic challenges across 7 popular Python251

data science libraries. We evaluate the efficiency and pass@1 of LLM-generated code for the DS-252

1000 tasks using Qwen2.5-Coder-7B-Instruct and deepseek-coder-6.7b-instruct, both in their original253

form and fine-tuned with EFFI-CODE. As shown in Table 5, fine-tuning with EFFI-CODE leads254

to modest improvements in code efficiency for both models. For Qwen2.5-Coder-7B-Instruct, the255

average execution time (ET) decreases by 0.8%, and the total memory usage (TMU) decreases by256

0.9% after fine-tuning, while the pass@1 rate improves significantly from 17.00% to 35.70%. For257

deepseek-coder-6.7b-instruct, fine-tuning results in a 4.5% reduction in ET and a 5.6% reduction258

in TMU, with the memory usage (MU) and normalized memory usage (NMU) also decreasing by259

1.9% and 2.0%, respectively, although the pass@1 rate remains the same at 37.50%. While the260

improvements in code efficiency for the DS-1000 benchmark are less pronounced compared to other261

benchmarks, the results still demonstrate that fine-tuning with EFFI-CODE can enhance the efficiency262

of LLM-generated code for data science tasks.263
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4.3 Different Programming Language264

In addition to evaluating the efficiency and pass@1 of LLM-generated code for Python tasks, we265

also conduct experiments on the HumanEval-X dataset, where we focus on the C++ and Java subsets,266

to measure the performance of EFFI-CODE fine-tuned LLMs in a different-language setting. As267

shown in Table 6, both Qwen2.5-Coder-7B-Instruct and deepseek-coder-6.7b-instruct demonstrate268

significant improvements in code efficiency and pass@1 rates after fine-tuning with EFFI-CODE for269

C++ tasks. Qwen2.5-Coder-7B-Instruct achieves a 37.1% reduction in average execution time (ET),270

a 42.6% reduction in memory usage (MU), and a 53.8% reduction in total memory usage (TMU),271

with the pass@1 rate improving from 7.32% to 48.17%. Similarly, deepseek-coder-6.7b-instruct272

exhibits a 45.2% reduction in ET, a 50.0% reduction in MU, and a 40.0% reduction in TMU, with273

the pass@1 rate increasing from 14.63% to 40.24%. For Java tasks, deepseek-coder-6.7b-instruct274

achieves a 36.5% reduction in ET, a 50.5% reduction in MU, and a 30.4% reduction in TMU after275

fine-tuning, with the pass@1 rate improving from 14.63% to 57.93%, matching the performance of the276

fine-tuned Qwen2.5-Coder-7B-Instruct. These results demonstrate that fine-tuning with EFFI-CODE277

can significantly enhance the efficiency and correctness of LLM-generated code across multiple278

programming languages.279

4.4 Comparison with Baselines280

To further demonstrate the efficiency of the code generated by EFFI-CODE fine-tuned LLMs, we281

compare the performance of CodeLlama-7b-hf fine-tuned using EFFI-CODE with two baselines: PIE282

Shypula et al. [2024] and Mercury Du et al. [2024]. The evaluation results on the HumanEvalPlus283

dataset are presented in Table 7. We can observe that for the correct tasks addressed by both PIE and284

EFFI-CODE, PIE requires 0.30 (s) on average to address each task, which is a 23.1% reduction in285

average execution time compared to the original CodeLlama-7b-hf generated code. However, the286

EFFI-CODE fine-tuned CodeLlama-7b-hf reduces the average execution time by 46.2%, requiring only287

0.21 (s) on average to address each correct task. Moreover, the EFFI-CODE fine-tuned model achieves288

a 46.9% reduction in NET, a 43.9% reduction in TMU, and a 43.2% reduction in NTMU compared to289

PIE. The pass@1 also improves from 19.5% for PIE to 31.1% for the EFFI-CODE fine-tuned model.290

Similarly, when compared to Mercury, the EFFI-CODE fine-tuned CodeLlama-7b-hf demonstrates a291

46.2% reduction in average execution time, a 47.9% reduction in NET, a 45.6% reduction in TMU,292

and a 46.4% reduction in NTMU. The pass@1 rate improves significantly from 9.1% for Mercury to293

31.1% for the EFFI-CODE fine-tuned model, with both methods having an overlapped percentage294

of 4.3%. The substantial improvements in efficiency and correctness achieved by the EFFI-CODE295

fine-tuned model demonstrate the effectiveness of this approach in optimizing LLM-generated code296

for practical applications.297

5 Conclusion298

In this paper, our research addresses a critical gap in the efficiency of code generated by LLMs by299

introducing the EFFI-CODE dataset, designed to enhance both the correctness and execution efficiency300

of LLM-generated code via fine-tuning. Through meticulous aggregation, preprocessing, and iterative301

optimization, we provide a robust resource that significantly boosts the performance of open-source302

LLMs like DeepSeek-Coder and Qwen. Our experiments reveal substantial improvements, with303

notable increases in pass rates and decreases in execution time, underscoring the potential of EFFI-304

CODE to advance the state of code generation in resource-constrained environments. By open-305

sourcing our model weights, training data, and source code, we aim to foster further research and306

innovation in this vital area of AI development tools.307
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A Appendix584

A.1 Broader Impacts585

This paper presents work aimed at advancing the field of Machine Learning by improving the586

efficiency and correctness of code generated by LLMs. The societal benefits of this research include:587

• Sustainability: By reducing computational resource consumption (e.g., energy and mem-588

ory usage), our work aligns with global efforts to mitigate the environmental impact of589

large-scale computing. Efficient code generation could lower operational costs and energy590

demands in industries reliant on software development.591

• Resource-Constrained Environments: Enhanced efficiency enables broader adoption of592

LLM-generated code in mobile, embedded, or edge computing systems, where energy and593

processing power are limited.594

• Research Advancement: Open-sourcing our dataset and models fosters transparency and595

accelerates research into sustainable AI systems, encouraging further innovations in code596

optimization.597

Ethical Considerations:598

• Data Provenance: The dataset is aggregated from publicly available open-source repositories599

on Hugging Face, ensuring compliance with licensing terms. However, future work should600

continue to prioritize responsible data curation practices.601

• Bias and Generalization: While our framework supports multilingual adaptability, biases in602

the source code (e.g., language-specific optimizations or cultural coding norms) may inad-603

vertently propagate. Mitigating such biases requires careful dataset design and validation.604

• Developer Dependency: Widespread adoption of optimized LLM-generated code could605

influence coding practices. Ensuring human developers retain critical problem-solving skills606

remains important.607

Overall, this work aims to address a critical gap in LLM-generated code efficiency while maintaining608

correctness. We encourage future research to explore trade-offs between efficiency, maintainability,609

and fairness in automated code generation.610

A.2 Prompt Template611

Please continue to complete the function. You are not allowed to modify the given code and
do the completion only. Please return all completed functions in a code block. Here is the
given code to complete:
‘‘‘python
{{Prompt}}
‘‘‘

612

A.3 Efficiency Metrics613

Execution Time (ET) Execution time (ET) measures the average time taken for code execution.
Mathematically, ET is defined as:

ET =
1

N

N∑
Tcode

where ET is the execution time metric, Tcode is the execution time of the code (with all the test cases),614

and N is the number of codes generated by code generation models used for evaluation.615

Normalized Execution Time (NET) Normalized Execution Time (NET) measures the execution
time required by generated code relative to that of a canonical solution. We define NET as:

NET =
1

N

N∑ Tcode

Tcanonical
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where Tcode is the execution time of the generated code and Tcanonical is the execution time of the616

canonical solution. A NET value greater than 1 indicates that the generated code is slower than the617

canonical solution, while a value less than 1 suggests the generated code is faster.618

Max Memory Usage (MU) Max Memory Usage (MU) measures the average max memory con-
sumption during code execution. Mathematically, MU is defined as:

MU =
1

N

N∑
Mcode

where MU is the memory usage metric, Mcode is the max memory consumption of the generated619

code among all the test cases, and N is the number of code instances generated by code generation620

models used for evaluation. This metric is critical to assess the resource efficiency of generated code,621

particularly in environments with limited maximum memory capacity.622

Normalized Max Memory Usage (NMU) Normalized Max Memory Usage (NMU) quantifies
how the max memory efficiency of the generated code compares to the canonical solution. We define
NMU as:

NMU =
1

N

N∑ Mcode

Mcanonical

where NMU is the normalized max memory usage metric, Mcode is the max memory usage of the623

generated code, and Mcanonical is the max memory usage of the canonical solution. An NMU value624

less than 1 indicates that the generated code is more memory-efficient than the canonical solution,625

whereas a value greater than 1 suggests it is less efficient in terms of memory usage. This metric626

provides a relative measure of the memory optimization in the generated code in comparison to a627

standard baseline.628

Total Memory Usage (TMU) Total Memory Usage (TMU) assesses the efficiency of memory
usage throughout the execution of code, taking into account both the magnitude and duration of
memory utilization. To calculate TMU, first, monitor and record the memory usage at discrete time
intervals during the execution, resulting in a memory usage profile M(t), where t represents time.
Then, compute the area under the curve of M(t) over the total execution time, Ttotal, using numerical
integration methods such as the trapezoidal rule:

TMU =
1

N

N∑∫ Ttotal

0

M(t) dt

A lower TMU value indicates higher memory efficiency, reflecting an optimized balance between the629

amount of memory used and the duration of its usage.630

Normalized Total Memory Usage (NTMU) The Normalized Total Memory Usage (NTMU) offers
a comparison of the dynamic memory efficiency between the generated code and the canonical
solution. To determine NTMU, calculate the TMU for both the generated code and the canonical
solution. Normalize the TMU of the generated code by dividing it by the TMU of the canonical
solution:

NTMU =
1

N

N∑ TMUcode

TMUcanonical

where TMUcode is the TMU of the generated code and TMUcanonical is the TMU of the canonical631

solution. An NTMU value less than 1 signifies that the generated code manages dynamic memory632

more efficiently compared to the canonical solution, while a value greater than 1 indicates less633

efficient management of dynamic memory. This metric provides insight into the relative use of634

dynamic memory of generated code compared to an established benchmark.635

A.4 Robustness of Overhead Results636

The overhead results would be affected by the local environments, which causes that the results of637

Effi-Code fine-tuned LLMs may not able to represent the results of the efficiency profiling in different638

environments. To address this issue, we have conducted additional experiments and provided more639

robust evaluation results.640
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Setup ET NET MU NMU TMU NTMU

Python 3.11.10 - Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz

Qwen2.5-Coder-7B 0.59 1.95 61.95 0.99 24.29 1.83
+Effi-Code 0.40 1.01 61.96 0.99 18.74 1.02

Python 3.11.10 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.28 1.63 36.15 1.00 20.01 1.88
+ SFT 0.25 1.38 36.52 1.01 19.85 1.56

Python 3.11.10 - Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.35 1.45 36.14 1.00 24.28 1.63
+ SFT 0.22 1.01 36.51 1.01 15.26 1.09

Python 3.11.4 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.67 1.16 61.43 1.00 40.01 1.22
+Effi-Code 0.58 1.02 60.77 0.97 32.50 1.03

Python 3.11.0 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.28 1.64 34.55 1.00 19.39 1.87
+ SFT 0.25 1.39 34.90 1.02 20.03 1.59

Python 3.9.0 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.30 1.60 34.26 1.01 21.02 2.10
+Effi-Code 0.24 1.20 34.52 1.02 19.84 1.32

Python 3.10.0 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.29 1.63 33.26 1.01 20.32 2.16
+ SFT 0.26 1.43 33.50 1.02 19.53 1.61

Table 8: Evaluation results of Effi-Code’s effectiveness on different software-hardware setups.

Firstly, we have evaluated the effectiveness of Effi-Code on seven different software-hardware setups,641

as shown in Rebuttal Table 2. The results demonstrate that Effi-Code fine-tuned LLMs achieve higher642

efficiency than the original LLMs across all setups. For example, in the environment of Python643

3.11.10 - Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz, the average execution time decreases644

from 0.59s to 0.40s when using Effi-Code to fine-tune Qwen2.5-Coder-7B, reducing the average645

execution time by 32%.646

Secondly, we clarify that for the same setup, where we evaluate the efficiency of LLM-generated647

code several times, the efficiency results are consistent. As shown in Paper Table 8, where we execute648

the LLM-generated code five times, the standard deviation of execution time (ET) is 0.00548 (s),649

indicating that the evaluation results are consistent and reliable for a given setup.650

Finally, our evaluation setup follows the practices established in recent works on benchmarking the651

efficiency of automatically generated code, such as Mercury Du et al. [2024], Effibench Huang et al.652

[2024b], and SOAP Huang et al. [2024a]. By adhering to these benchmarks, we ensure that our653

evaluation is in line with the current standards in the field.x654

A.5 Test case augmentation655

Some of the candidate tasks we collected do not have test cases. To address this, we use GPT-3.5-turbo656

to construct test cases by feeding the task description and source code into the model and requiring it657

to generate test cases for our experiments. After that, we analyze whether each test case generated by658

GPT-3.5-turbo is correct and then filter out incorrect test cases and tasks that do not have the correct659

test cases. To determine the correctness of the test cases generated by GPT-3.5-turbo, we execute660

each test case individually with the initial solution for each task in our collected candidate tasks. We661

check whether any errors are raised during the execution of each test case with the initial solution.662

In other words, we verify if the test case passes the initial solution. We treat the test cases that pass663
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the initial solution as correct. On the other hand, test cases that do not pass the initial solution are664

filtered out. By using the initial solution as a reference, we can effectively assess the correctness of665

the generated test cases and ensure that only valid test cases are retained for further analysis.666

A.6 Case Study667

To illustrate how the source code generated by EFFI-CODE fine-tuned LLM is more efficient than the668

source code generated by the LLM without fine-tuning on EFFI-CODE, we provide an example in669

Figure 5. We can observe that the code generated by Qwen2.5-Coder-7B requires 9.89 (s) to execute670

all unit tests, while the code generated by EFFI-CODE fine-tuned Qwen2.5-Coder-7B with SFT only671

requires 0.14 (s) to execute. The key reason is that the code generated by Qwen2.5-Coder-7B requires672

significantly more recursive calls, as it lacks optimized pruning strategies such as breaking early in673

redundant paths. This inefficiency leads to a much larger number of computations, ultimately resulting674

in the observed longer execution time. The code generated by EFFI-CODE fine-tuned Qwen2.5-Coder-675

7B, on the other hand, incorporates smart optimizations, such as terminating recursion early when676

certain conditions are met, thereby reducing the overall time complexity.677

Task Description

Problem: You are given an integer array cookies, where cookies[i] denotes the number of
cookies in the ith bag. You are also given an integer k that denotes the number of children to
distribute all the bags of cookies to. All the cookies in the same bag must go to the same child
and cannot be split up. The unfairness of a distribution is defined as the maximum total
cookies obtained by a single child in the distribution. Return the minimum unfairness of all
distributions.
solution = Solution() assert solution.distributeCookies([8, 15, 10, 20, 8], 2) == 31 assert
solution.distributeCookies([6, 1, 3, 2, 2, 4, 1, 2], 3) == 7
solution = Solution()
assert solution.distributeCookies([8, 15, 10, 20, 8], 2) == 31
assert solution.distributeCookies([6, 1, 3, 2, 2, 4, 1, 2], 3) == 7

Qwen2.5-Coder-7B

Execution Time: 9.89 (s)
Max Memory Peak: 24.39 (MB)
Memory Usage: 240.47 (MB*s)
class Solution:

def distributeCookies(self, cookies, k):
min_unfairness = float('inf')
distribution = [0] * k
def distribute(i):

nonlocal min_unfairness
if i == len(cookies):

min_unfairness = min(min_unfairness,\
max(distribution))
return

for j in range(k):
distribution[j] += cookies[i]
distribute(i + 1)
distribution[j] -= cookies[i]

distribute(0)
return min_unfairness

Qwen2.5-Coder-7B SFT with EFFI-CODE

Execution Time: 0.14 (s)
Max Memory Peak: 24.39 (MB)
Memory Usage: 2.47 (MB*s)
class Solution:

def distributeCookies(self, cookies, k):
def backtrack(i):

nonlocal ans
if i == len(cookies):

ans = min(ans, max(children))
return

for j in range(k):
children[j] += cookies[i]
backtrack(i + 1)
children[j] -= cookies[i]
if children[j] == 0:

break
children = [0] * k
ans = float('inf')
backtrack(0)
return ans

Figure 5: A case illustration for the task with code generated by Qwen2.5-Coder-7B and EFFI-CODE
fine-tuned Qwen2.5-Coder-7B in EffiBench problem_idx=2305.

A.7 Randomness678

To ensure reliable model performance, we also account for variability in system conditions. Metrics679

like Execution Time (ET), Max Memory Usage (MU), and Total Memory Usage (TMU) might680

fluctuate due to factors like server workload and hardware availability, introducing noise that affects681

performance measurements. To demonstrate whether our results are affected by such randomness,682

we provide five results at different times with the mean and std for Qwen2.5-Coder-7B fine-tuned683
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Table 9: Code efficiency and pass@1 of Qwen2.5-Coder-7B with EFFI-CODE with the five times
execution on EffiBench.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓

Random Execution 1 0.17 1.30 32.71 1.03 8.31 2.23
Random Execution 2 0.17 1.31 32.93 1.04 8.35 2.28
Random Execution 3 0.17 1.30 32.71 1.03 8.23 2.22
Random Execution 4 0.17 1.30 32.84 1.04 8.30 2.25
Random Execution 5 0.17 1.30 32.88 1.04 8.28 2.27

mean 0.17 1.302 32.814 1.037 8.293 2.249
std 0.0 0.003 0.09 0.003 0.038 0.023

with EFFI-CODE in Table 9. We can observe that the results are robust as the std of the five execution684

times is very low for all metrics. For example, the std of ET for the five executions is 0.00.685
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NeurIPS Paper Checklist686

The checklist is designed to encourage best practices for responsible machine learning research,687

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove688

the checklist: The papers not including the checklist will be desk rejected. The checklist should689

follow the references and follow the (optional) supplemental material. The checklist does NOT count690

towards the page limit.691

Please read the checklist guidelines carefully for information on how to answer these questions. For692

each question in the checklist:693

• You should answer [Yes] , [No] , or [NA] .694

• [NA] means either that the question is Not Applicable for that particular paper or the695

relevant information is Not Available.696

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).697

The checklist answers are an integral part of your paper submission. They are visible to the698

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it699

(after eventual revisions) with the final version of your paper, and its final version will be published700

with the paper.701

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.702

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a703

proper justification is given (e.g., "error bars are not reported because it would be too computationally704

expensive" or "we were unable to find the license for the dataset we used"). In general, answering705

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we706

acknowledge that the true answer is often more nuanced, so please just use your best judgment and707

write a justification to elaborate. All supporting evidence can appear either in the main paper or the708

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification709

please point to the section(s) where related material for the question can be found.710

IMPORTANT, please:711

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",712

• Keep the checklist subsection headings, questions/answers and guidelines below.713

• Do not modify the questions and only use the provided macros for your answers.714

1. Claims715

Question: Do the main claims made in the abstract and introduction accurately reflect the716

paper’s contributions and scope?717

Answer: [TODO]718

Justification: [TODO]719

Guidelines:720

• The answer NA means that the abstract and introduction do not include the claims721

made in the paper.722

• The abstract and/or introduction should clearly state the claims made, including the723

contributions made in the paper and important assumptions and limitations. A No or724

NA answer to this question will not be perceived well by the reviewers.725

• The claims made should match theoretical and experimental results, and reflect how726

much the results can be expected to generalize to other settings.727

• It is fine to include aspirational goals as motivation as long as it is clear that these goals728

are not attained by the paper.729

2. Limitations730

Question: Does the paper discuss the limitations of the work performed by the authors?731

Answer: [TODO]732

Justification: [TODO]733
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Guidelines:734

• The answer NA means that the paper has no limitation while the answer No means that735

the paper has limitations, but those are not discussed in the paper.736

• The authors are encouraged to create a separate "Limitations" section in their paper.737

• The paper should point out any strong assumptions and how robust the results are to738

violations of these assumptions (e.g., independence assumptions, noiseless settings,739

model well-specification, asymptotic approximations only holding locally). The authors740

should reflect on how these assumptions might be violated in practice and what the741

implications would be.742

• The authors should reflect on the scope of the claims made, e.g., if the approach was743

only tested on a few datasets or with a few runs. In general, empirical results often744

depend on implicit assumptions, which should be articulated.745

• The authors should reflect on the factors that influence the performance of the approach.746

For example, a facial recognition algorithm may perform poorly when image resolution747

is low or images are taken in low lighting. Or a speech-to-text system might not be748

used reliably to provide closed captions for online lectures because it fails to handle749

technical jargon.750

• The authors should discuss the computational efficiency of the proposed algorithms751

and how they scale with dataset size.752

• If applicable, the authors should discuss possible limitations of their approach to753

address problems of privacy and fairness.754

• While the authors might fear that complete honesty about limitations might be used by755

reviewers as grounds for rejection, a worse outcome might be that reviewers discover756

limitations that aren’t acknowledged in the paper. The authors should use their best757

judgment and recognize that individual actions in favor of transparency play an impor-758

tant role in developing norms that preserve the integrity of the community. Reviewers759

will be specifically instructed to not penalize honesty concerning limitations.760

3. Theory assumptions and proofs761

Question: For each theoretical result, does the paper provide the full set of assumptions and762

a complete (and correct) proof?763

Answer: [TODO]764

Justification: [TODO]765

Guidelines:766

• The answer NA means that the paper does not include theoretical results.767

• All the theorems, formulas, and proofs in the paper should be numbered and cross-768

referenced.769

• All assumptions should be clearly stated or referenced in the statement of any theorems.770

• The proofs can either appear in the main paper or the supplemental material, but if771

they appear in the supplemental material, the authors are encouraged to provide a short772

proof sketch to provide intuition.773

• Inversely, any informal proof provided in the core of the paper should be complemented774

by formal proofs provided in appendix or supplemental material.775

• Theorems and Lemmas that the proof relies upon should be properly referenced.776

4. Experimental result reproducibility777

Question: Does the paper fully disclose all the information needed to reproduce the main ex-778

perimental results of the paper to the extent that it affects the main claims and/or conclusions779

of the paper (regardless of whether the code and data are provided or not)?780

Answer: [TODO]781

Justification: [TODO]782

Guidelines:783

• The answer NA means that the paper does not include experiments.784
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• If the paper includes experiments, a No answer to this question will not be perceived785

well by the reviewers: Making the paper reproducible is important, regardless of786

whether the code and data are provided or not.787

• If the contribution is a dataset and/or model, the authors should describe the steps taken788

to make their results reproducible or verifiable.789

• Depending on the contribution, reproducibility can be accomplished in various ways.790

For example, if the contribution is a novel architecture, describing the architecture fully791

might suffice, or if the contribution is a specific model and empirical evaluation, it may792

be necessary to either make it possible for others to replicate the model with the same793

dataset, or provide access to the model. In general. releasing code and data is often794

one good way to accomplish this, but reproducibility can also be provided via detailed795

instructions for how to replicate the results, access to a hosted model (e.g., in the case796

of a large language model), releasing of a model checkpoint, or other means that are797

appropriate to the research performed.798

• While NeurIPS does not require releasing code, the conference does require all submis-799

sions to provide some reasonable avenue for reproducibility, which may depend on the800

nature of the contribution. For example801

(a) If the contribution is primarily a new algorithm, the paper should make it clear how802

to reproduce that algorithm.803

(b) If the contribution is primarily a new model architecture, the paper should describe804

the architecture clearly and fully.805

(c) If the contribution is a new model (e.g., a large language model), then there should806

either be a way to access this model for reproducing the results or a way to reproduce807

the model (e.g., with an open-source dataset or instructions for how to construct808

the dataset).809

(d) We recognize that reproducibility may be tricky in some cases, in which case810

authors are welcome to describe the particular way they provide for reproducibility.811

In the case of closed-source models, it may be that access to the model is limited in812

some way (e.g., to registered users), but it should be possible for other researchers813

to have some path to reproducing or verifying the results.814

5. Open access to data and code815

Question: Does the paper provide open access to the data and code, with sufficient instruc-816

tions to faithfully reproduce the main experimental results, as described in supplemental817

material?818

Answer: [TODO]819

Justification: [TODO]820

Guidelines:821

• The answer NA means that paper does not include experiments requiring code.822

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/823

public/guides/CodeSubmissionPolicy) for more details.824

• While we encourage the release of code and data, we understand that this might not be825

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not826

including code, unless this is central to the contribution (e.g., for a new open-source827

benchmark).828

• The instructions should contain the exact command and environment needed to run to829

reproduce the results. See the NeurIPS code and data submission guidelines (https:830

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.831

• The authors should provide instructions on data access and preparation, including how832

to access the raw data, preprocessed data, intermediate data, and generated data, etc.833

• The authors should provide scripts to reproduce all experimental results for the new834

proposed method and baselines. If only a subset of experiments are reproducible, they835

should state which ones are omitted from the script and why.836

• At submission time, to preserve anonymity, the authors should release anonymized837

versions (if applicable).838
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• Providing as much information as possible in supplemental material (appended to the839

paper) is recommended, but including URLs to data and code is permitted.840

6. Experimental setting/details841

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-842

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the843

results?844

Answer: [TODO]845

Justification: [TODO]846

Guidelines:847

• The answer NA means that the paper does not include experiments.848

• The experimental setting should be presented in the core of the paper to a level of detail849

that is necessary to appreciate the results and make sense of them.850

• The full details can be provided either with the code, in appendix, or as supplemental851

material.852

7. Experiment statistical significance853

Question: Does the paper report error bars suitably and correctly defined or other appropriate854

information about the statistical significance of the experiments?855

Answer: [TODO]856

Justification: [TODO]857

Guidelines:858

• The answer NA means that the paper does not include experiments.859

• The authors should answer "Yes" if the results are accompanied by error bars, confi-860

dence intervals, or statistical significance tests, at least for the experiments that support861

the main claims of the paper.862

• The factors of variability that the error bars are capturing should be clearly stated (for863

example, train/test split, initialization, random drawing of some parameter, or overall864

run with given experimental conditions).865

• The method for calculating the error bars should be explained (closed form formula,866

call to a library function, bootstrap, etc.)867

• The assumptions made should be given (e.g., Normally distributed errors).868

• It should be clear whether the error bar is the standard deviation or the standard error869

of the mean.870

• It is OK to report 1-sigma error bars, but one should state it. The authors should871

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis872

of Normality of errors is not verified.873

• For asymmetric distributions, the authors should be careful not to show in tables or874

figures symmetric error bars that would yield results that are out of range (e.g. negative875

error rates).876

• If error bars are reported in tables or plots, The authors should explain in the text how877

they were calculated and reference the corresponding figures or tables in the text.878

8. Experiments compute resources879

Question: For each experiment, does the paper provide sufficient information on the com-880

puter resources (type of compute workers, memory, time of execution) needed to reproduce881

the experiments?882

Answer: [TODO]883

Justification: [TODO]884

Guidelines:885

• The answer NA means that the paper does not include experiments.886

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,887

or cloud provider, including relevant memory and storage.888
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• The paper should provide the amount of compute required for each of the individual889

experimental runs as well as estimate the total compute.890

• The paper should disclose whether the full research project required more compute891

than the experiments reported in the paper (e.g., preliminary or failed experiments that892

didn’t make it into the paper).893

9. Code of ethics894

Question: Does the research conducted in the paper conform, in every respect, with the895

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?896

Answer: [TODO]897

Justification: [TODO]898

Guidelines:899

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.900

• If the authors answer No, they should explain the special circumstances that require a901

deviation from the Code of Ethics.902

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-903

eration due to laws or regulations in their jurisdiction).904

10. Broader impacts905

Question: Does the paper discuss both potential positive societal impacts and negative906

societal impacts of the work performed?907

Answer: [TODO]908

Justification: [TODO]909

Guidelines:910

• The answer NA means that there is no societal impact of the work performed.911

• If the authors answer NA or No, they should explain why their work has no societal912

impact or why the paper does not address societal impact.913

• Examples of negative societal impacts include potential malicious or unintended uses914

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations915

(e.g., deployment of technologies that could make decisions that unfairly impact specific916

groups), privacy considerations, and security considerations.917

• The conference expects that many papers will be foundational research and not tied918

to particular applications, let alone deployments. However, if there is a direct path to919

any negative applications, the authors should point it out. For example, it is legitimate920

to point out that an improvement in the quality of generative models could be used to921

generate deepfakes for disinformation. On the other hand, it is not needed to point out922

that a generic algorithm for optimizing neural networks could enable people to train923

models that generate Deepfakes faster.924

• The authors should consider possible harms that could arise when the technology is925

being used as intended and functioning correctly, harms that could arise when the926

technology is being used as intended but gives incorrect results, and harms following927

from (intentional or unintentional) misuse of the technology.928

• If there are negative societal impacts, the authors could also discuss possible mitigation929

strategies (e.g., gated release of models, providing defenses in addition to attacks,930

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from931

feedback over time, improving the efficiency and accessibility of ML).932

11. Safeguards933

Question: Does the paper describe safeguards that have been put in place for responsible934

release of data or models that have a high risk for misuse (e.g., pretrained language models,935

image generators, or scraped datasets)?936

Answer: [TODO]937

Justification: [TODO]938

Guidelines:939

• The answer NA means that the paper poses no such risks.940
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• Released models that have a high risk for misuse or dual-use should be released with941

necessary safeguards to allow for controlled use of the model, for example by requiring942

that users adhere to usage guidelines or restrictions to access the model or implementing943

safety filters.944

• Datasets that have been scraped from the Internet could pose safety risks. The authors945

should describe how they avoided releasing unsafe images.946

• We recognize that providing effective safeguards is challenging, and many papers do947

not require this, but we encourage authors to take this into account and make a best948

faith effort.949

12. Licenses for existing assets950

Question: Are the creators or original owners of assets (e.g., code, data, models), used in951

the paper, properly credited and are the license and terms of use explicitly mentioned and952

properly respected?953

Answer: [TODO]954

Justification: [TODO]955

Guidelines:956

• The answer NA means that the paper does not use existing assets.957

• The authors should cite the original paper that produced the code package or dataset.958

• The authors should state which version of the asset is used and, if possible, include a959

URL.960

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.961

• For scraped data from a particular source (e.g., website), the copyright and terms of962

service of that source should be provided.963

• If assets are released, the license, copyright information, and terms of use in the964

package should be provided. For popular datasets, paperswithcode.com/datasets965

has curated licenses for some datasets. Their licensing guide can help determine the966

license of a dataset.967

• For existing datasets that are re-packaged, both the original license and the license of968

the derived asset (if it has changed) should be provided.969

• If this information is not available online, the authors are encouraged to reach out to970

the asset’s creators.971

13. New assets972

Question: Are new assets introduced in the paper well documented and is the documentation973

provided alongside the assets?974

Answer: [TODO]975

Justification: [TODO]976

Guidelines:977

• The answer NA means that the paper does not release new assets.978

• Researchers should communicate the details of the dataset/code/model as part of their979

submissions via structured templates. This includes details about training, license,980

limitations, etc.981

• The paper should discuss whether and how consent was obtained from people whose982

asset is used.983

• At submission time, remember to anonymize your assets (if applicable). You can either984

create an anonymized URL or include an anonymized zip file.985

14. Crowdsourcing and research with human subjects986

Question: For crowdsourcing experiments and research with human subjects, does the paper987

include the full text of instructions given to participants and screenshots, if applicable, as988

well as details about compensation (if any)?989

Answer: [TODO]990

Justification: [TODO]991
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Guidelines:992

• The answer NA means that the paper does not involve crowdsourcing nor research with993

human subjects.994

• Including this information in the supplemental material is fine, but if the main contribu-995

tion of the paper involves human subjects, then as much detail as possible should be996

included in the main paper.997

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,998

or other labor should be paid at least the minimum wage in the country of the data999

collector.1000

15. Institutional review board (IRB) approvals or equivalent for research with human1001

subjects1002

Question: Does the paper describe potential risks incurred by study participants, whether1003

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1004

approvals (or an equivalent approval/review based on the requirements of your country or1005

institution) were obtained?1006

Answer: [TODO]1007

Justification: [TODO]1008

Guidelines:1009

• The answer NA means that the paper does not involve crowdsourcing nor research with1010

human subjects.1011

• Depending on the country in which research is conducted, IRB approval (or equivalent)1012

may be required for any human subjects research. If you obtained IRB approval, you1013

should clearly state this in the paper.1014

• We recognize that the procedures for this may vary significantly between institutions1015

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1016

guidelines for their institution.1017

• For initial submissions, do not include any information that would break anonymity (if1018

applicable), such as the institution conducting the review.1019

16. Declaration of LLM usage1020

Question: Does the paper describe the usage of LLMs if it is an important, original, or1021

non-standard component of the core methods in this research? Note that if the LLM is used1022

only for writing, editing, or formatting purposes and does not impact the core methodology,1023

scientific rigorousness, or originality of the research, declaration is not required.1024

Answer: [TODO]1025

Justification: [TODO]1026

Guidelines:1027

• The answer NA means that the core method development in this research does not1028

involve LLMs as any important, original, or non-standard components.1029

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1030

for what should or should not be described.1031
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