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Large language models (LLMs) have been widely applied to assist test generation with the source code under
test provided as the context. This paper aims to answer the question: If the source code under test is
incorrect, will LLMs be misguided when generating tests? The effectiveness of test cases is measured
by their accuracy, coverage, and bug detection effectiveness. Our evaluation results with five open- and
six closed-source LLMs on four datasets demonstrate that incorrect code can significantly mislead LLMs in
generating correct, high-coverage, and bug-revealing tests. For instance, in the HumanEval dataset, LLMs
achieve 80.45% test accuracy when provided with task descriptions and correct code, but only 57.12% when
given task descriptions and incorrect code. For the APPS dataset, prompts with correct code yield tests that
detect 39.85% of the bugs, while prompts with incorrect code detect only 19.61%. These findings have important
implications for the deployment of LLM-based testing — using it on mature code may help protect against
future regression, but on early-stage immature code, it may simply bake in errors. Our findings also
underscore the need for further research to improve LLMs’ resilience against incorrect code in generating
reliable and bug-revealing tests.
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1 INTRODUCTION

Automatic test case generation is a crucial part of the software development process, enriching the
effectiveness of test cases and ensuring that the software under development adheres to the specified
requirements and operates as intended [4, 61]. Recently, many research works have harnessed
the capabilities of large language models (LLMs) to generate test cases automatically[9, 14, 16, 24,
25,27, 49, 55, 65, 66, 69, 72]. The information provided with LLMs typically contains two aspects:
the source code under test, and/or the task description of the code. For example, FuzzGPT [16],
TitanFuzz [14], KernelGPT [67], and CodaMOSA [34] provide LLMs with the source code under
test only for LLMs to generate tests automatically. CodeCoT [25] uses both task description and
source code under test. AgentCoder [27] and MetaGPT [24] directly provide the task description to
LLMs without source code.
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Although generating tests with LLMs based on the source code under test is a common practice,
it poses a significant challenge that is often overlooked: if the source code under test contains bugs,
the tests generated by LLMs may inherit the flawed logic or assumptions from the code, resulting
in ineffective or incorrect tests. The relationship between the correctness of the source code and
the effectiveness of the generated test cases, however, remains largely unexplored.

To fill this gap, in this paper, we present the first systematic empirical study on how the correctness
of the code under test impacts the effectiveness of the LLM-generated test cases. We evaluate the
effectiveness of test cases by measuring their accuracy' and coverage in the correct code provided
by the dataset. We also check their bug detection ratio in our collected bug set.

We first conduct experiments using 5 open-source and 6 closed-source LLMs on three widely-
studied code generation datasets (i.e., HumanEval [48], MBPP [6], and APPS [22]). For each code
generation task, we prompt each LLM to generate test cases based on five different prompts: (1)
task description only, (2) task description with correct code, (3) task description with incorrect
code, (4) correct code only, and (5) incorrect code only. We then evaluate the effectiveness of
LLM-generated test cases in three dimensions: accuracy, coverage, and bug detection ratio. We
also examine whether LLMs are more prone to being misled by the code they generate themselves.
Finally, we evaluate LLMs with incorrect code from the real-world library BugsinPy [64] to check
whether our observations hold for real-world scenarios.

Our results demonstrate that incorrect code under test can significantly impact the ability of
LLMs to generate effective tests. For example, for the HumanEval dataset, test cases generated by
LLMs achieve an accuracy of 80.45%, a coverage of 98.43%, and a bug detection ratio of 87.38% with
both task descriptions and correct code under test in the prompt. However, when the code under
test is incorrect, these results drop to 57.12%, 91.72%, and 74.97%, respectively. We also observe
that LLMs are less likely to be misguided by the code they generate by themselves. Finally, our
experiments with real-world tasks demonstrate the same conclusions as those of widely adopted
benchmarks, although the accuracy, coverage, and bug detection ratio are much lower than on the
three simpler benchmarks. In particular, for the bug detection ratio, LLMs with correct code under
test detect 5.45% of the bugs on average, but LLMs with incorrect code under test detect only 0.91%
on average.

In conclusion, this paper makes the following contributions:

o We present the first systematic study on the influence of source code on test case generation.

e Our evaluation results demonstrate that providing task descriptions with correct code yields
SOTA performance in test case generation. For instance, in the HumanEval dataset, LLM-
generated test cases achieve an average accuracy of 80.45% on average for all models when
providing task descriptions and correct code. Conversely, when provided with task descrip-
tions and incorrect code, the average accuracy declines substantially to 57.12%.

e We provide implications for developers and researchers on using LLMs for generating tests
automatically based on our observations. In particular, our finding indicates that LLM-
based testing will be more effective at generating tests to protect mature code from
regression errors. However, if used in the early stage of software development on
relatively immature code, it will be more likely to “bake in” errors. We also call for
more research to improve LLMs’ resilience against incorrect code in generating reliable and
bug-revealing tests.

1Both “accuracy” and “correctness” are widely used in the literature to refer to the ratio of the test cases that pass correct
code against the total number of generated test cases [9, 30, 36, 38, 40, 61, 69]. We use the term of accuracy in our paper.
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2 BACKGROUND AND RELATED WORK
2.1 LLMs for Source Code Generation

LLMs have seen boosting adoption in code generation, driven by the availability of extensive open-
source code repositories and the demand for enhanced developer productivity. Pioneering works
focused on generating functionally correct code from natural language instructions exclusively,
including CodeT5 [62], AlphaCode [39], CodeGen [47], InCoder [18], StarCoder [37], SantaCoder [3],
and DeepSeek Coder [13]. With the rapid scale expansion of LLMs, subsequent advancements have
produced models such as Codex [10] and CodeLLaMA [53]. These models are fine-tuned from
foundational LLMs [8, 58] and are proficient in a variety of tasks, including code generation [10, 12],
program repair [20, 28], automated testing [15, 34], code translation [1, 54], type prediction [46, 63],
and code summarization [2, 21]. Among these, the model performance on the code generation task
has emerged as a pivotal benchmark for evaluating the LLM holistic coding capability.

To enhance the functional correctness of generated source code, feedback-based refinement tech-
niques have been employed. These methods mimic the human learning process, where individuals
enhance their knowledge through trial and error [7, 45]. Initial efforts revolved around human
feedback for model evaluation and refinement [31, 51]. To reduce human intervention, automated
feedback approaches have been explored, utilizing signals from the diverse aspects, including
LLM self-reflection [26, 43], dedicated verification models [42], external tools [25, 27], external
knowledge sources [19], and model generation distribution [68]. For example, Self-Edit [70] and
Self-Evolve [29] execute the initially generated program on canonical test cases and provide the
execution results as feedback to prompt the LLM to refine the code. Furthermore, Self-Debug [11]
incorporates multiple feedback sources, including program explanations, unit tests, and program
interpreters. Notably, ALGO [71] takes a more detailed approach to generate a reference oracle
program via an exhaustive search.

2.2 Debugging and Improving Source Code with Test Cases

In the current code evaluation paradigm [24, 25, 57, 60], an LLM starts by tentatively generating a
source code based on the given task description and then validating the code functionality through
a set of pre-defined test cases. These test cases are executed and expected to identify any code errors
and inconsistencies between the generated code and the given task description. Consequently,
developing appropriate test cases is vital for accurately assessing code generation tasks. However,
high-effectiveness public test cases are not always available. To address this, researchers have
harnessed LLMs to generate test cases [9, 24, 25, 27, 49, 55, 72]. Tools like CodeT [9] generate test
cases directly for the source code, minimizing human effort and expanding test scenario coverage.
CodeChain [33] enhances this by devising prompt templates to format the generated test cases.
CodeCoT [25] advances further by generating both source code and test cases simultaneously.
AgentCoder [27] and MetaGPT [24] decompose the software development process into multiple
stages, with each stage managed by specialized agents. Test designer agents, for example, are
proficient in generating reliable test cases based on the task description.

2.3 Improving Effectiveness of Test Case Generation

Low-effectiveness test cases can mislead the debugging process, resulting in incorrect conclusions
and sub-optimal code refinement [9, 24, 27]. One potential issue arises when the generated test cases
are misaligned with the problem instruction. In the code debugging process, even if the generated
code is correct, it may fail to pass erroneous tests, leading the LLM to unnecessarily rectify the code
and potentially introduce new errors. Similarly, in software testing, the developed software may raise
errors when incorrect test cases are used to analyze its correctness. The errors raised by incorrect
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code may also cause developers to revise the source code and introduce new errors. Another concern
is the coverage of the generated test cases [9, 25]. If the test cases only cover a limited range of
common behaviors and fail to account for edge cases or specific task requirements, the generated
code may pass all tests while still being incomplete or incorrect. This can give a false sense of
confidence in the code’s correctness, as it has not been thoroughly validated against all relevant
scenarios. To enhance test case effectiveness, several prompt engineering techniques are employed,
which involve using source code-guided and non-source code-guided approaches. Frameworks
like CodeT [9], AgentCoder [27], MetaGPT [24], LATS [73], and Reflexion [56] generate test cases
based solely on task descriptions. In contrast, CodeCoT [25], ATHENATEST [59], EvalPlus [41], and
CodaMOSA [34] leverage existing source code to generate test cases. Though these methods show
promise, the impact of incorporating source code on test case effectiveness is not comprehensively
understood. This paper aims to empirically study whether source code inclusion consistently
enhances the effectiveness of LLM-generated test cases, compared to using task descriptions alone.

3 METHOD

This section introduces our method for generating, extracting, and executing tests, as well as our
measurements on the effectiveness of tests.

3.1 Prompt Construction

The first step in our study is prompt construc-
tion. In our experiments, we have five prompts  Table 1. The five prompts used in our empirical study
for each task that requires LLMs to generate for generating test cases with LLMs.
code (See Tab. 1). The first prompt (P_T) is the
Task description. For this prompt, we follow
the setup of existing works [10, 50], and directly
ask LLMs to generate test cases for each task ~ P-T Task description
based on the task description with zero-shot ~ P-T-CC Task description + Correct Code
prompting. The second prompt (P_T_CC) in our P_T_IC | Task description + Incorrect Code
experiments is Task description + Correct code. ~ P-CC Correct Code
For the HumanEval, MBPP, and APPS datasets, F-IC Incorrect Code
we directly use the correct code provided by
each dataset to represent the correct code in
our experiments. For BugsInPy, we utilize the patched code as the correct code in our experiments.
The third prompt (P_T_IC) in our experiments is the Task description + Incorrect code. For the
incorrect code, we first require LLMs evaluated in our experiments to generate code with zero-shot
prompting for the HumanEval, MBPP, and APPS datasets, and then collect incorrect pieces of code
for each task? in our evaluated dataset and then randomly select an incorrect code that would be
used in all models as the P_T_IC’s incorrect code part. For the BugsInPy dataset, we directly use the
pre-patch source code as the incorrect code. For the fourth prompt (P_CC), we utilize Correct code
without task description. The fifth prompt (P_IC) is directly used as an Incorrect solution without
a task description. In our experiments, the correct source code for P_T_CC and P_CC is the same for
each task, and the incorrect source code for P_T_IC and P_IC is also the same for each task.
Finally, to make sure the test cases generated by LLMs follow the test case format rather
than pure natural languages in the experiments, we also provide the test case template assert
function_name(input_parameters) == output before the task description so that the test cases
generated by LLMs can follow the same format and can be directly used in our experiments.

Prompt Template

2Since some tasks would be addressed by all LLMs, we then filter these tasks from our evaluation tasks.
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3.2 Tests Extraction and Script Writing

To make sure the test cases can be extracted from the LLMs’ response, we constraint LLMs generate
test casesin the ' * " python[test_case] * " so that we can directly extract test cases from " "python
and " that can remove the natural language in the test cases®. After extracting tests from the
LLM-generated response, we utilize the HumanEval provided script to automatically write the
source code (e.g., correct code for the accuracy and coverage evaluation) and LLM-generated tests
in the script. For the required libraries for each task, we directly import them based on the datasets
(e.g., HumanEval) setup, which can avoid errors raised due to the script’s lack of necessary libraries
in the experiments.

3.3 Source Code Execution

For accuracy and coverage, we conduct experiments in each dataset-provided correct code. For
bug detection experiments, we execute LLM-generated test cases in the constructed bug detection
source code. During the code execution process, we set the timeout value as 5 seconds for all tasks
to make sure the code can be executed with all test cases and does not require much time. To speed
up the testing process, we utilize concurrency in our accuracy and bug detection experiments and
set the maximum number of workers as 20, which can reduce the overhead of the testing process.
Since we employ coverage.py library * for the coverage experiments, which can not support the
concurrency setting, we opt to execute all tests using a single-threaded script instead.

3.4 Effectiveness Measurement

We measure the effectiveness of LLM-generated test cases from three metrics, i.e., the accuracy of
LLM-generated test cases (Accuracy), code line coverage of LLM-generated test cases in the correct
code (Coverage), and bug detection effectiveness of LLM-generated test cases (Bug Detection).

3.4.1  Accuracy. We measure the accuracy of LLM-generated test cases by calculating the number
of test cases generated by LLM that can pass the correct code provided by the dataset®. If a test case
generated by an LLM passes the correct code, we treat it as correct, i.e., when we feed the input of
the test case into the correct code, the correct code returns the same output as the test case output.
We analyze two levels of effectiveness in our experiments: test level and task level.

At the test level, we analyze the accuracy of LLM-generated test cases for the same task
individually. For example, if GPT-3.5-turbo generated test cases for Task 1 provided by HumanEval
have ten test cases, where seven of the test cases are correct and three test cases are incorrect, we
then calculate the test level accuracy as 70% (7/10) for Task 1. The test level accuracy is calculated
as:

At the task level, we consider LLM-generated test cases to be correct only if all test cases can
pass the correct code. In the previous example, even though 70% of the test cases for Task 1 can
pass the correct code, the task level accuracy would be 0% because not three of the test cases can
not pass the correct code.

3.4.2 Coverage. We use the coverage.py package to calculate the line-level coverage of the test
cases on the correct code provided by the dataset. To calculate the coverage of LLM-generated test
cases, we consider two different scenarios based on the accuracy result, i.e., coverage for correct
tests at the test level and coverage for correct tests at the task level. The former measures the

3Sometimes LLMs generate test cases with some natural language explanations [24, 25].

4coverage.py Library: https://github.com/nedbat/coveragepy

5For the HumanEval, MBPP, and APPS datasets, we use the “canonical solution” provided by the dataset as the correct code
in our experiments. For BugsInPy, we use the patched code as the correct code.
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percentage of code lines in the correct code executed by all correct tests at the test level. The latter
measures the percentage of code lines in the correct code executed by correct tests at the task level.

3.4.3 Bug Detection. To measure the bug detection efficacy of the LLM-generated test cases, we
first construct a bug set for each dataset (more details in Sec. 4.2). We then analyze whether the
LLM-generated test cases can discover bugs in our constructed bug set.

Similar to the coverage measurement, we consider two different scenarios: (1) bug detection for
correct tests at the test level and (2) bug detection for correct tests at the task level. Bug detection
for correct tests at the test level measures the percentage of bug code in our constructed code
detected by LLM-generated correct tests at the test level. Bug detection for correct tests at the task
level measures the percentage of bugs in our constructed code solutions that can be detected by
the correct test cases at the task level.

4 EXPERIMENT DESIGN
4.1 Research Questions
This study answers the following questions:

¢ RQ1: How do the source code in prompts affect LLMs in test generation? This RQ
investigates the effectiveness of LLM-generate test cases in terms of test case accuracy,
coverage, and bug detection effectiveness among the five test case generation prompts. There
are three sub-RQs:
— RQ1.1 What is the accuracy of LLM-generated test cases for the five different prompts?
— RQ1.2: What is the code coverage of LLM-generated test cases for the five different prompts?
— RQ1.3: What is the bug detection effectiveness of LLM-generated test cases in our constructed

pieces for the five different prompts?

¢ RQ2: How does the source of the code influence the LLMs in test generation? This
RQ investigates whether LLM-generated tests are more likely misguided by LLM-generated
code rather than our constructed P_T_CC and P_T_IC.

¢ RQ3: To what extent are LLMs misguided by the incorrect code in the prompts in
test generation? This RQ analyzes the percentage of LLM-generated test cases that can pass
the incorrect code provided in P_IC.

e RQ4: Do our observations hold for real-world code? This RQ investigates the effective-
ness of LLM-generated test cases based on the source code of real-world tasks.

4.2 Datasets

In our experiments, we first use HumanEval, MBPP, and APPS datasets, which are widely used in
LLM-based code generation [9, 24, 27, 33, 72] and LLM-based test case generation [9, 11, 17, 32]. To
facilitate a consistent evaluation of test case generation effectiveness across datasets, we convert the
prompt format of APPS and MBPP into HumanEval’s function-level format for both task description
and solutions, which is more easily to evaluate compared to the line-level code script [44]. This
conversion constrains the LLMs to generate test cases in a standardized unit test case format,
simplifying the evaluation process of the generated test cases. Next, we evaluate the effectiveness
of the generated test cases on the BugsInPy dataset, which contains real-world Python programs
with known bugs and allows us to analyze how the source code of real-world programs affects the
performance of LLM-generated test cases in detecting bugs.

HumanEval. Chen et al. [10] proposes the first code generation dataset that utilizes pass@k
to analyze the code generation effectiveness of LLMs. HumanEval contains 164 code generation
tasks in its original version. In our experiments, some tasks are correctly addressed by all LLMs,
which then do not contain incorrect code as P_T_IC in our setup. Then we remove these tasks in
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Table 2. Code generation datasets used in the experiments. The tokens are calculated based on tiktoken with
GPT-4 encoding.

Dataset Mean Token ~ Mean Token ~ Mean Token ~ Mean Token ~ Mean Token No. of No. of

‘ P_T P_T_CC P_T_IC P_cC P_IC  Problems Bug code
humaneval 117.19 164.21 198.69 58.85 59.81 85 85
mbpp 122.97 162.79 191.46 51.04 55.89 213 213
apps 486.25 571.12 541.68 94.78 56.11 172 172
BugsInPy - - - 1092.20 904.00 10 10

our experiments. Finally, we collect 85 tasks from the original HumanEval dataset to measure the
effectiveness of LLM-generated test cases.

MBPP. [5] contains 974 code generation tasks. In the experiments, we follow the current existing
works and utilize the 399 tasks in the MBPP-EvalPlus [41] version to measure the effectiveness of the
LLM-generated test cases. Prior to conducting the experiments, we convert the task descriptions of
MBPP into the HumanEval function format. Since the correct code provided by MBPP is already at
the function level, we directly incorporate the original task prompt into the function. Subsequently,
we feed the converted tasks into the evaluated LLMs to generate solutions. For each task, we select
an incorrect code from the generated solutions to construct P_T_IC and P_IC. However, since some
tasks do not have incorrect code, we ultimately collect 213 tasks for our experiments.

APPS. [23] contains 5,000 code generation tasks with three levels of difficulty (including 1,000
introductory tasks, 2,000 interview tasks, and 1,000 competition tasks). Prior to conducting the
experiments, we first convert the task descriptions into the HumanEval format. Since the correct
code provided by APPS is not at the function level, we use GPT-3.5-turbo to convert the correct
code into function-level code, filter out incorrect converted functions, and incorporate the original
task prompt into the function. After this process, we collect 405 tasks for our experiments. Next,
we feed the converted tasks into the evaluated LLMs to generate solutions. For each task, we select
an incorrect code from the generated solutions to construct P_T_IC and P_IC. However, since some
tasks do not have incorrect code, we ultimately collect 172 tasks for our experiments.

BugsInPy. [64] contains 493 real bugs from 17 real-world Python programs, including popular
libraries such as matplotlib, numpy, pandas, and fastapi. Since tasks in BugsInPy does not exist
a predefined task descriptions, we directly use the patched and original code as P_CC and P_IC,
respectively. We choose BugsInPy because the patched code of BugsInPy is primarily focused on
in-file functions that do not require calling functions from other files and are not at the class level,
which is more suitable for our experiments than other benchmarks such as SWE-bench.

In our experiments, we initially conduct experiments on all 493 tasks from the BugsInPy dataset.
However, we observe that for most of the tasks, the generated tests for both prompts are incorrect
at both the test level and task level. The primary reason for this is that most of the tasks require
13,000+ input tokens, and this long-context information impairs LLMs’ reasoning ability and causes
LLMs to struggle in generating useful test cases for the testing process. These tasks are useless
for us to investigate the influence of correct code and incorrect code, we therefore remove them
and focus on only the remaining 10 tasks from 8 programs, which have correct test cases produced
from either correct code or incorrect code.

Our constructed bug set. To measure the bug detection effectiveness of LLM-generated test cases,
we construct a bug set with incorrect solutions from the tasks in each dataset. For HumanEval,
MBPP, and APPS, we first require our evaluated LLMs to generate code for each task description.
Then, we randomly select an incorrect code for each task to construct the bug set. Since some tasks
do not have incorrect code, we filter out these tasks during the dataset construction process. Finally,
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Fig. 1. RQ1.1: Accuracy of LLM-generated test cases across HumanEval, MBPP, and APPS datasets using
different prompts at test level and task level.

we obtain 85, 213, and 172 incorrect code samples for HumanEval, MBPP, and APPS, respectively.
For BugsInPy, we directly use the original incorrect code as the bug code.

4.3 Evaluation LLMs

Five open-source LLMs and six closed-source LLMs are used in our experiments. The experiments
are conducted on an 8 * H100 server.

4.3.1 Open-Source Models. For open-source LLMs, we evaluate Meta-Llama-3-8B, CodeLlama-
7B-Python-hf, DeepSeek-Coder-6.7B-Instruct, StarCoder2-7B, and Codestral-22B-v0.1 in
our experiments. We select these open-source LLMs since they achieve SOTA performance in code

generation tasks (e.g., evalplus) with low parameters and then can be conducted with an 8 * H100
server.

4.3.2 Closed-Source Models. We conducted an evaluation of six state-of-the-art closed-source LLMs:
GPT-3.5-turbo, GPT-3.5-turbo-1106, GPT-4-turbo, GPT-4, Claude-3-haiku, and Claude-3-
sonnet. These models exemplify the latest advancements in LLM architecture®.

4.4 Inference Configuration of LLMs

In our experiments, four parameters affect the LLM response: Temperature, Top-p, Top-K, and
max_new_tokens. To ensure consistency in the test cases generated by LLMs across different
executions, we set Temperature to 0, Top-p to 1.0, Top-K to 0, and max_new_tokens to 1024. These
settings guarantee that the generation process follows a greedy decoding approach’.

5 RESULTS AND FINDINGS

This section shows the experiment results and the analysis for our RQs.

5.1 RQ1: How do the source code in prompts affect LLMs in test generation?
5.1.1 RQ1.1 What is the accuracy of LLM-generated test cases for the five different prompts?

Test Level Accuracy. Figure 1a presents test level accuracy results across three datasets (Hu-
manEval, MBPP, and APPS) using different prompts for all LLMs. We observe that P_T- and
P_T_CC-guided test generation achieve SOTA performance compared to other prompts. For exam-
ple, as shown in Tab. 3 Test level, for the HumanEval dataset, P_T_CC and P_T achieve 80.45% and
78.30% test case accuracy on average for all models, while other prompt-guided test generation only
achieves 64.05% accuracy. For the MBPP and APPS datasets, we can still observe that P_T_CC and

SGPT-3.5-turbo and GPT-3.5-turbo-1106 are variants within the GPT-3.5 series. “GPT-3.5-turbo-1106” indicates a release

date of June 11, 2023, whereas “GPT-3.5-turbo” refers to a more recent iteration released on January 25, 2024.
"We also provide the CodeBLEU scores for five consecutive generations in Sec. 6.2.
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Table 3. RQ1.1: Accuracy of LLM-generated test case across HumanEval, MBPP, and APPS datasets

Model HumanEval MBPP APPS
: P.T P.TCC P.TIC PcCC PIC P.T P.TCC P.TIC PcCC PIC P.T P.TCC P.TIC PCC PIC
Test level |
Meta-Llama-3-8B 68.53 74.52 2693 70.25 2693 | 75.18 69.89 2595  54.64 2595 | 66.59 61.96 2844 5804 2844
CodeLlama-7b-Python-hf 65.13 65.84 3426 4744 4051 | 57.16 78.74 33.03 4528 302 | 90.60 74.5 24.97 311 25.08
deepseek-coder-6.7b-instruct | 79.85 71.81 5485  59.63 58.02 | 74.23 623 4793 5675 4653 | 72.34 53.24 2907 4116  30.26
starcoder2-7b 76.88 74.49 4078 48.97 3854 | 70.66 57.43 4061 5222 39.27 | 76.28 65.74 2979 3523 2011
Codestral-22B-v0.1 75.45 82.55 6127 7711 6502 | 7459 71.89 4781 7839 4685 | 47.28 60.36 368 5266  36.06
GPT-3.5-turbo 79.95 82.39 620 3211 5828 | 75.07 81.07 4626 77.03 5125 | 56.76 61.56 3358 5278  34.68
GPT-3.5-turbo-1106 78.05 85.23 6486 3371 5879 | 7653 83.06 4585 7779 5212 | 60.26 69.31 3499 57.03  33.61
GPT-4-turbo-preview 87.25 89.92 7277 8657 7244 | 8235 86.73 6536 8579  57.69 68.4 73.46 5049 7539 56.65
GPT-4 82.35 88.86 7619 8477  69.57 77.4 86.47 6489 7712 57.36 | 65.44 74.58 53.65 6523 5136
Claude-3-sonnet 76.25 83.55 6338 7195 6333 | 69.32 78.82 49.17 7182 47.39 | 5347 63.21 3695 5423 3584
Claude-3-haiku 91.57 85.75 7098  92.08  78.14 57.9 73.54 4288 6619 5246 | 80.89 67.8 5845 8525 5276
Overall | 783 80.45 5712 64.05 57.23 | 7185 75.45 4634 67.55 461 | 67.12 65.97 37.93 5528  37.62
Task level |
Meta-Llama-3-8B 47.06 4353 23.53 400 2353 | 62.91 49.77 28.17 385 2817 | 36.63 35.47 2209 3314 2209
CodeLlama-7b-Python-hf 43.53 31.76 16.47 824 1176 | 59.62 87.79 216 4131 1737 | 61.63 80.23 2035 1802  19.19
deepseek-coder-6.7b-instruct | 48.24 38.82 200 1412 2353 | 58.22 1127 16.9 704 216 | 31.98 9.88 6.4 4.07 6.4
starcoder2-7b 72.94 70.59 1412 1059 1059 | 77.93 64.79 1268 1596 1221 | 69.19 4535 4.65 93 349
Codestral-22B-v0.1 38.82 35.29 3647  40.00 3529 | 4178 31.92 4272 49.30 2676 | 1163 13.95 4070 19.19 3837
GPT-3.5-turbo 49.41 49.41 37.65 1647  37.65 | 53.99 60.56 2723 57.75 3615 | 2558 31.98 1047 2326 1105
GPT-3.5-turbo-1106 51.76 60.00 4118 17.65 400 | 5822 64.32 2723 5822 3192 | 27.33 42.44 9.3 250 1105
GPT-4-turbo-preview 49.41 60.00 3647 5176 4824 | 5211 59.15 3897 5681 507 | 2674 31.98 2209 3372 19.77
GPT-4 62.35 57.65 3529 5294 4235 | 54.93 60.09 3474 6150 4178 | 37.79 40.12 1686 3547  18.02
Claude-3-sonnet 37.65 38.82 2941 40.00 3059 | 35.68 38.50 3803 3286 2582 | 1279 1337 31.40 186 2384
Claude-3-haiku 74.12 50.59 5412 6588  57.65 | 69.48 446 4648  63.85 47.89 | 56.98 2733 41.86 6570 343
Overall 52.3 48.77 3134 3251 32.83 | 56.81 52.07 3043 4392 3094 | 36.21 33.83 2056 2595  18.87
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(a) RQ1.2a: Test level. (b) RQ1.2b: Task level.

Fig. 2. RQ1.2: Coverage of LLM-generated test cases for different prompts.

P_T achieve SOTA test case accuracy compared to other prompts. Furthermore, we observe that
without task description guided test case generation, P_CC also achieves SOTA accuracy compared
to P_IC. For example, P_CC achieves 64.05% accuracy while P_IC only achieves 57.23% accuracy on
average for all models.

Task Level Accuracy. Figure 1b presents the task level accuracy results for different prompts.
We can observe that similar to test level accuracy, P_T and P_T_CC still obtain SOTA performance
compared to other prompts. For example, For example, as shown in Tab. 3 Task level, P_T and
P_T_CC achieve 52.30% and 48.77% test case accuracy for the HumanEval dataset, while other
prompts only achieve 32.83% accuracy on average for all models.

Answer to RQ1.1: Incorrect code can significantly impact the ability of LLMs to generate
correct tests. For instance, in the HumanEval dataset, LLMs achieve 80.45% test accuracy when
provided with P_T_CC, but only 57.12% with P_T_IC.

5.1.2 RQ1.2 What is the code coverage of LLM-generated test cases for the five different prompts?
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Table 4. RQ1.2: Code line coverage of LLM-generated correct test case, where we evaluate whether these test
cases can cover lines in the correct code in each dataset.

Model ‘ HumanEval MBPP APPS

P_T P_T.CC P_T_IC P.CC P_IC P.T PTCC PTIC PCC PIC P_T PT.CC PT.IC PCC PIC
Test Level |
Meta-Llama-3-8B 95.36 94.77 83.15 936 8315 | 9168 9438 7872 9174 7872 82.1 85.37 60.87 8405  60.87
CodeLlama-7b-Python-hf 9579 99.07 9032 9683  89.94 | 89.66  96.37 8403 8161 8358 | 7574  88.81 7579 8347 7731
deepseek-coder-6.7b-instruct | 99.50 98.24 9199 972 9323 | 98.15 98.05 86.93 9694 8913 | 89.15 93.67 7804 9085 7813
starcoder2-7b 97.90 96.82 8558 9337 8834 | 96.70 93.44 79.63 9474 8182 | 90.06 87.69 7158 8615  73.56
Codestral-22B-v0.1 9879 99.16 9509 9829 9595 | 98.59 98.36 9199 9882 9333 | 9356 93.79 88.13 9532  87.94
GPT-3.5-turbo 9879 99.00 9387 7132 9383 | 9824  98.78 8848 979 9072 | 95.68 96.28 8261 9338 8224
GPT-3.5-turbo-1106 98.92  99.13 9468 7132 9364 | 97.89  99.04 8848 983 9021 | 9595 97.17 8171 9276  79.17
GPT-4-turbo-preview 9934 9951 94.15 9919 9444 | 9896  99.90 9157 9884 9005 | 98.94  99.26 83.08 9792  86.29
GPT-4 99.48 993 94.03 9924 9473 | 9896  99.82 9024 9933 914 | 98.79 98.78 8359 9752 8534
Claude-3-sonnet 9937 99.52 9453 9855 9544 | 9856  99.62 9321 9887 946 98.1 98.43 8644 9663  88.16
Claude-3-haiku 94.14 9817 9152 9473 9431 | 9667  99.32 9134  97.64 9504 | 9346  96.73 83.94 9277  83.16
Overall | 9794 9843 9172 9215 9245 | 9673  97.92 87.69 9589 8896 | 91.96 94.18 80.07 9189 802
Task level |
Meta-Llama-3-8B 86.03 85.0 69.63 8404 6963 | 9172 8733 7335 8256 7335 | 77.31 78.51 6375 7569 6375
CodeLlama-7b-Python-hf 83.40 78.59 5941 4043 5141 | 89.45 96.85 66.64 8099 5977 | 83.25 92.06 5914 5868 5845
deepseck-coder-6.7b-instruct | 87.45 81.64 66.75 5586  68.42 | 88.77 47.34 5867 3675 6615 | 7150 42.16 2894 2343 2942
starcoder2-7b 95.41 9438 5653 460 4473 | 96.29 92.61 5366  57.96 49.68 | 90.66 83.71 2295 4332 19.07
Codestral-22B-v0.1 81.91 79.97 8033 8290 807 | 8255 77.24 83.17  87.50 7316 | 46.26 50.18  77.21 6295 7643
GPT-3.5-turbo 87.75  87.96 8118 59.25 8024 | 8912 9047 7347 9034 80.58 704 75.67 4381 64.68 4544
GPT-3.5-turbo-1106 8862 9173 8374 610 829 | 9032 9153 7391 9043 7771 | 7276  83.20 4105 6638 468
GPT-4-turbo-preview 8876 9246 81.09 8821 8568 | 8834  90.73 8207  89.22 8587 | 70.78 74.38 63.02 7661  60.63
GPT-4 93.13 91.75 80.97 9019 8376 | 88.92 90.57 80.03 9130 8246 | 80.74 8277 5707 7775 57.57
Claude-3-sonnet 83.03 81.86 7379 8276 7491 | 80.25 81.95 7963  77.25 7018 476 4807 7128 5963  65.15
Claude-3-haiku 88.91 86.07 8498  87.14 8526 | 90.65 83.59 83.07  89.97 8373 825 68.63 7683 8534 7271
Overall 87.67 86.49 744 7071 7342 | 88.76 84.56 7342 7948 7297 | 72.16 70.85 550 6313 5413

Coverage of Correct Tests at the Test Level. The evaluation results are shown in Figure 2a, where we
observe that the code line coverage of both P_T and P_T_CC is higher than other prompt-generated
tests. In most models and datasets, P_T_CC also achieves better results compared to P_T, indicating
that providing task descriptions and correct code examples to LLMs can guide them in generating
test cases that cover more lines of the correct code. For example, as shown in Tab. 4, the code line
coverage of P_T_CC and P_T achieves 98.43% and 97.94% in the HumanEval dataset, while P_T_IC
only achieves 91.72% code line coverage. Next, we can also observe that in most of the experiments,
the code line coverage of P_CC is also higher than P_IC. For example, the code line coverage of
P_CC achieves 95.89% while P_IC only achieves 88.96% code line coverage in the MBPP dataset
for all models on average. These evaluation results demonstrate that for the code line coverage
of LLM-generated correct tests at the test level, test cases generated by the guidance of incorrect
code (i.e., P_T_IC and P_IC) have lower coverage than those guided by correct code and even those
generated with only the task descriptions provided.

Coverage of Correct Tests at the Task Level. The evaluation results are shown in Figure 2b, where
we observe that similar to the code line coverage of correct tests at the test level, P_T and P_T_CC
generated test cases achieve higher code line coverage compared to P_T_IC. Moreover, P_T gen-
erated tests have competitive code line coverage compared to P_T_CC. For example, as shown in
Tab. 4, the overall code line coverage of P_T and P_T_CC is 87.67% and 86.49% in the HumanEval
dataset, while P_T_IC only achieves 74.40% coverage. Furthermore, we observe that in the MBPP
dataset, providing P_CC to guide test case generation achieves 79.48% code line coverage, which is
higher than P_IC with 72.97% coverage. These evaluation results demonstrate that for the code line
coverage of most of the LLM-generated test cases, those generated by the guidance of incorrect
code (i.e., P_T_IC and P_IC) have lower coverage than those guided by correct code and even those
generated with only the task descriptions provided.
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Table 5. RQ1.3: Bug detection rate of LLM-generated test cases in our constructed bug set.

Model ‘ HumanEval MBPP APPS

P_T P_T_CC P_T_IC pP_CcC P_IC P_T P_T_CC P_T_IC P_cC P_IC P_T P_T_CC P_T_IC P_CC P_IC

Test level |
Meta-Llama-3-8B 41.18 44.71 20.0 38.82 20.0 24.41 29.58 14.55 26.29 14.55 28.49 35.47 8.14 30.23 8.14
CodeLlama-7b-Python-hf 44.71 57.65 45.88 35.29 29.41 23.0 35.21 19.72 16.43 14.08 0.0 35.47 12.79 27.33 17.44
deepseek-coder-6.7b-instruct 57.65 50.59 55.29 42.35 35.29 39.44 36.15 37.09 31.46 20.66 30.23 58.14 48.26 36.63 20.93
starcoder2-7b 51.76 48.24 47.06 34.12 25.88 32.86 27.7 26.29 26.76 13.62 32.56 29.07 31.4 25.58 15.12
Codestral-22B-v0.1 51.76 57.65 52.94 48.24 36.47 35.21 36.62 34.74 40.38 24.41 50.0 52.91 45.93 47.67 23.84
GPT-3.5-turbo 50.59 52.94 36.47 12.94 34.12 32.39 38.97 22.54 36.15 22.54 47.67 51.16 20.93 43.02 20.35
GPT-3.5-turbo-1106 49.41 55.29 38.82 11.76 32.94 33.33 40.38 21.6 36.15 20.66 51.74 57.56 20.35 41.86 19.19
GPT-4-turbo-preview 57.65 58.82 60.00 54.12 36.47 41.78 44.13 39.44 38.97 19.25 63.37 65.12 63.37 65.70 26.16
GPT-4 55.29 57.65 56.47 51.76 38.82 40.85 43.19 40.38 38.97 24.41 63.37 63.95 62.79 54.07 25.0
Claude-3-sonnet 50.59 57.65 56.47 48.24 35.29 36.15 44.60 39.44 37.09 21.13 57.56 64.53 62.79 52.91 29.07
Claude-3-haiku 17.65 47.06 4471 1059 200 | 1831 35.21 30.99 169  14.08 | 30.81 52.33 39.53 1337 1047
Overall ‘ 48.02 53.48 46.74 35.29 31.34 32.52 37.43 29.71 31.41 19.04 41.44 51.43 37.84 39.85 19.61

Task level |
Meta-Llama-3-8B 28.24 34.12 20.0 29.41 20.0 23.47 24.41 12.21 21.13 12.21 2791 33.72 32.56 27.91 32.56
CodeLlama-7b-Python-hf 18.82 23.53 36.47 5.88 8.24 13.62 30.99 16.9 16.43 11.27 13.95 33.72 16.86 13.95 19.77
deepseek-coder-6.7b-instruct 29.41 23.53 14.12 8.24 16.47 22.54 8.45 15.02 4.69 11.27 9.30 6.4 8.72 291 3.49
starcoder2-7b 47.06 47.06 34.12 8.24 14.12 30.52 24.88 21.13 7.51 12.21 34.88 33.72 36.63 4.65 20.35
Codestral-22B-v0.1 21.18 22.35 22.35 27.06 21.18 17.37 13.15 17.37 22.54 11.74 6.98 9.88 6.4 10.47 4.65
GPT-3.5-turbo 25.88 24.71 20.0 8.24 17.65 19.72 23.94 14.08 25.82 15.96 16.86 22.09 5.81 14.53 6.4
5-turbo-1106 28.24 35.29 23.53 8.24 20.0 23.94 29.11 14.08 26.29 15.02 16.28 29.07 5.81 16.86 7.56
turbo-preview 32.94 37.65 34.12 28.24 22.35 24.41 29.11 19.72 23.0 10.33 17.44 22.67 16.28 23.26 20.35
35.29 35.29 32.94 27.06 22.35 25.82 28.64 24.41 27.23 18.31 25.0 28.49 22.67 20.35 31.98
Claude-3-sonnet 18.82 23.53 18.82 21.18 10.59 17.37 18.78 17.37 15.96 7.51 6.98 9.3 8.14 12.21 4.65
Claude-3-haiku 4.71 14.12 21.18 7.06 7.06 2.35 15.96 13.15 9.86 7.51 233 14.53 8.72 8.72 11.63
Overall ‘ 26.42 29.2 25.24 16.26 16.36 ‘ 20.1 22.49 16.86 18.22 12.12 ‘ 16.17 22.15 15.33 14.16 14.85

Table 6. RQ1.3: Bug detection rate of LLM-generated test cases on the incorrect code provided with the
prompt (P_T_IC).

Model ‘ HumanEval MBPP APPS

P_T P_T_CC P_T_IC P.CC P_IC P.T PT.CC PTIC PcCC PIC P_T P_TCC PTIC PCC PIC
Test level |
Meta-Llama-3-8B 65.88 67.06 2824 6353 2824 | 47.42 60.56 2676 5117 2676 | 37.21 17.67 1686 4593 1686
CodeLlama-7b-Python-hf 72.94 92.94 60.0 7647 4824 | 4554 65.73 4178 3146 3192 174 47.67 1802 4419 3081
deepseek-coder-6.7b-instruct | 95.29 85.88 88.24 8118  57.65 | 76.53 71.83 69.01  69.95 385 | 37.79 77.33 6279 6163  33.14
starcoder2-7b 80.00 75.29 7412 6353 4353 | 65.73 55.87 5634  57.28 3099 | 45.35 38.95 4128 4593 2849
Codestral-22B-v0.1 91.76 97.65 9294  88.24 6588 | 77.46 83.57 770 8216 4836 | 70.35 76.16 6221 7209  37.79
GPT-3.5-turbo 89.41 90.59 60.0 24.71 61.18 76.53 84.04 42.25 77.46 46.01 74.42 75.00 40.12 70.35 38.37
GPT-3.5-turbo-1106 89.41 92.94 6471 2471 6235 | 7277 81.69 40.85 784 44.13 75.0 77.91 3721 66.28 343
GPT-4-turbo-preview 95.29 97.65 97.65 9059  63.53 83.1 89.67 7653 8169 4178 | 87.79 90.70 87.79  90.70 43.6
GPT-4 95.29 95.29 9294 9176 6471 | 79.81 85.92 7934 8498 493 | 87.79 89.53 89.53 8256  44.19
Claude-3-sonnet 92.94 97.65 97.65 85.88 62.35 79.81 85.92 81.69 81.22 46.01 84.88 89.53 87.79 77.33 48.84
Claude-3-haiku 25.88 68.24 68.24 1882 28.24 | 3286 69.95 68.08 3099 2347 | 41.86 75.58 5088 2151  19.19
Overall | 8128 87.38 7497 6449 5326 | 67.05 75.89 5997  66.07 3884 | 58.56 71.46 5486 6168  34.14
Task level |
Meta-Llama-3-8B 50.59 52.94 3176 4941 3176 | 47.42 50.70 216 3991 216 | 3837 43.60 4128 4186  41.28
CodeLlama-7b-Python-hf 35.29 41.18 50.59 941 1294 | 30.05 58.69 3521 2911 1737 | 20.93 43.02 2093 2035 2616
deepseek-coder-6.7b-instruct | 48.24 37.65 2941 1529 2118 | 47.89 14.08 7.98 2019 | 1105 8.14 93 5.23 4.65
starcoder2-7b 70.59 67.06 5647 1294 2588 | 63.38 53.52 1315 2394 | 47.09 43.6 47.09 814 2849
Codestral-22B-v0.1 34.12 36.47 36.47 40.00 29.41 36.62 30.05 3 46.48 20.66 11.05 12.79 9.88 18.02 8.72
GPT-3.5-turbo 45.88 45.88 3294 1647  30.59 493 55.40 2488 5211 3239 | 23.26 30.23 93 22.67 9.3
GPT-3.5-turbo-1106 48.24 57.65 37.65 1647 3529 | 48.83 57.28 2441 5258 2864 | 25.58 41.28 872 2384 1047
GPT-4-turbo-preview 47.06 57.65 50.50  47.06 3294 | 46.48 55.40 37.09 4507 216 | 24.42 30.81 2267 3198 2674
GPT-4 57.65 55.29 52.94 50.59 37.65 47.89 53.05 47.42 56.34 36.15 36.05 36.05 314 33.14 43.60
Claude-3-sonnet 34.12 38.82 2824 3647 2118 33.8 34.74 3099 2864 1315 | 11.63 12.79 1279 17.44 8.72
Claude-3-haiku 8.24 20.0 2941 1059 941 4.69 26.29 27.23 1502 1315 6.4 22.09 1453 1221 1395
Overall 43.64 46.42 39.68 277 262 | 4149 44.47 3248 3513 2262 | 23.26 29.49 2072 2135 2019

Answer to RQ1.2: Incorrect code also affects the ability of LLMs to generate high-coverage tests.
For instance, for the APPS dataset, LLMs achieve 94.18% test-level coverage on average when
provided with task descriptions and correct code, but only 80.07% when given task descriptions
and incorrect code.

5.1.3 RQ1.3: What is the bug detection effectiveness of LLM-generated test cases in our con-
structed pieces for the five different prompts? To investigate whether LLM-generated test cases can
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Fig. 3. RQ1.3: Bug detection rate of LLM-generated test cases with different prompts.

detect errors in incorrect code, we evaluated the effectiveness of LLM-generated test cases in our
constructed solutions and P_T_IC provided incorrect code for correct test cases at both the test
level and the task level.

Bug Detection in Constructed Solutions for the of Correct Tests at the Test Level. The bug detection
results of correct test cases are shown in Figure 3a, where we can observe that P_T_CC achieves the
SOTA bug detection performance in three datasets, while sometimes the bug detection effectiveness
of P_T generated tests competitive results for P_T_CC. For example, as shown in Tab. 5, we can
observe that in the HumanEval dataset, on average for all evaluated LLMs, 53.48% bug source code
was detected by test cases generated by P_T_CC. While only 48.02% bug source code was detected
by P_T generated test cases. Then, we can also observe that in the MBPP and APPS datasets, 37.43%
and 51.43% bug source code was detected by P_T_CC generated test cases. While other prompts
only detect 32.52% and 41.44% bug source code. Next, we can also observe that for the P_CC and
P_IC, tests generated by P_CC also achieve SOTA bug detection effectiveness compared to incorrect
code guided test case generation. For example, in the HumanEval dataset,35.29% bug source code
was detected by P_CC generated test cases, while only 31.34% bug source code was detected by
P_IC generated source code.

Bug Detection in Constructed Solutions for the of Correct Tests at the Task Level. As shown in
Figure 3b, we can observe that P_T_CC achieves SOTA performance compared with other prompt-
guided test generation methods in most of the experiments. Similar to other metrics, test cases
generated by the guidance of P_T also achieve competitive results with P_T_CC in some experiments.
As shown in Tab. 5, we can observe that in the HumanFEval dataset, tests generated by the guidance
of P_T_CC detect 29.20% bug source code, on average for all models, while baselines only detect
26.42% bug source code. In the MBPP and APPS datasets, we can observe that 22.49% and 22.15%
bug source codes were also detected by P_T_CC generated tests. However, we can observe that the
baselines only detected 20.10% and 16.17% bug source code.

Bug Detection in P_T_IC solutions for the of Correct Tests at the Test Level. Tab. 6 Test level presents
the test level bug detection results for different prompts across the three datasets. We observe
that for all datasets, the test cases generated based on P_T_CC achieve the highest bug detection
effectiveness compared to other prompts, on average. For example, in the HumanEval dataset, the
bug detection effectiveness of P_T_CC-generated test cases is 87.38% on average for all models,
while the bug detection effectiveness of P_T_IC-generated test cases is only 74.97%. This indicates
that test cases generated based on task description + correct code are more effective in detecting
bugs in incorrect code than those generated based on incorrect code.

Bug Detection in P_T_IC solutions for the of Correct Tests at the Task Level. Tab. 6 Task level
presents the task level bug detection results for different prompts across the three datasets. Similar
to the test level results, we observe that for all datasets, the test cases generated based on P_T_CC
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Table 7. RQ2: Accuracy differences between the test cases generated by the correct code and incorrect code
for different sources of code. We calculate the diff_absolute as the difference between the accuracy of P_T_CC
and P_T_IC, and the diff_relative as the diff_absolute divided by the accuracy of P_T_CC. Others refer to the
results based on code provided by other sources, while Own refers to the results based on the LLM’s own
generated code.

HumanEval MBPP APPS

Model diff_absolute diff_relative diff_absolute diff_relative diff_absolute diff_relative

Others Own  Others Own | Others Own  Others Own ‘ Others Own  Others Own
Test level ‘
CodeLlama-7b-Python-hf -24.93 -42.39 -51.37 -109.82 36.19 -27.80 45.71 -144.57 28.85 19.55 31.81 40.13
deepseek-coder-6.7b-instruct 9.56 -2.90 12.43 -4.24 13.03 15.68 19.24 21.84 0.21 13.05 0.37 23.37
starcoder2-7b 18.15 41.05 18.15 41.05 -12.51 -28.39 -30.86 -93.57 -8.47 21.00 -16.94 24.00
Codestral-22B-v0.1 2.37 5.88 2.86 7.90 18.42 20.53 24.69 29.24 22.52 17.96 35.65 31.00
GPT-3.5-turbo 26.37 16.79 31.86 20.81 47.15 23.45 55.67 28.67 47.64 13.33 75.01 21.34
GPT-3.5-turbo-1106 10.82 21.09 12.96 24.76 49.75 27.99 57.96 33.19 53.40 17.46 75.30 27.43
GPT-4-turbo-preview 5.55 -1.97 6.19 -2.24 16.83 14.35 19.41 16.53 19.02 12.04 25.52 16.07
GPT-4 -6.57 16.12 -7.44 18.31 13.13 12.74 14.89 15.57 23.33 11.79 30.62 16.30
Claude-3-sonnet -0.55 -0.50 -0.67 -0.65 15.48 12.18 19.05 15.85 21.49 4.68 28.70 7.83
Claude-3-haiku 4190 0.24 -2.23 0.30 2054 23.05 27.64  29.89 343 10.67 475 1547
Overall ‘ 10.46 7.71 12.52 9.64 23.23 9.60 31.05 14.22 17.49 8.16 27.80 13.77
Task level ‘
Meta-Llama-3-8B 83.33 77.38 83.33 77.38 46.54 11.15 77.57 27.87 -3.49 -15.12 0.00 0.00
CodeLlama-7b-Python-hf 17.50 16.25 29.17 40.62 21.04 -15.12 33.66 0.00 19.30 13.93 36.67 44.11
deepseek-coder-6.7b-instruct 27.95 -1.47 70.39 -9.09 -17.17 -3.08 -103.87 -23.30 0.40 -1.81 3.20 -28.96
starcoder2-7b 40.96 48.19 40.96 48.19 17.16 -2.04 24.02 -3.17 -16.37 14.01 -49.11 21.01
Codestral-22B-v0.1 -4.42 -5.88 -12.02 -19.99 13.27 17.23 35.98 63.93 13.99 8.98 78.20 77.55
GPT-3.5-turbo 28.62 30.07 53.38 54.60 47.76 27.75 72.59 43.48 33.50 27.90 90.37 63.45
GPT-3.5-turbo-1106 13.77 24.88 23.66 42.74 55.59 36.30 78.75 53.41 39.23 15.77 87.18 45.06
GPT-4-turbo-preview 8.02 5.56 13.82 10.01 36.59 30.36 59.81 50.71 23.06 15.68 72.33 47.04
GPT-4 -15.02 10.99 -26.63 20.41 22.73 22.06 35.52 34.83 24.72 10.23 58.91 24.79
Claude-3-sonnet 11.48 -1.29 28.39 -4.66 12.86 16.78 32.43 47.48 21.41 15.20 64.24 63.84
Claude-3-haiku 9.41 -7.26 18.26 -20.83 22.64 27.86 55.46 67.13 -3.90 15.03 -11.70 46.90
Overall ‘ 20.15 17.95 29.34 21.76 ‘ 25.36 15.39 36.54 32.94 ‘ 13.80 10.89 39.12 36.80

generally achieve the highest bug detection effectiveness compared to other prompts. For example,
in the HumanFEval dataset, the task level bug detection effectiveness of P_T_CC-generated test
cases is 46.42% on average for all models, while the task level bug detection effectiveness of
P_T_IC-generated test cases is only 39.68%.

Answer to RQ1.3: LLM-generated test cases based on P_T_CC (task description + correct code)
achieve the highest bug detection ratio across all datasets. For example, in the HumanEval
dataset, the test level bug detection effectiveness of P_T_CC-generated test cases is 87.38% on
average for all models, while the bug detection effectiveness of P_T_IC-generated test cases is
74.97%.

5.1.4 Case Analysis. Here we provide a case illustration to demonstrate why the effectiveness of
P_T_IC generated tests is lower than P_T_CC. As shown in Figure 4 P_T_CC, we can observe that
the P_T_CC provided solution is correct, where the code ensures that the values between a and
b are digits (0-9). Then, for the test case assert generate_intergers(10,14) its output is []
since no digits between 10 and 14. However, as shown in Figure 4 P_T_IC, we can observe that the
solution in P_T_IC does not consider digits ranging from 0 to 9, then generates test case assert
generate_intergers(28, 36) == [28,30,32,34,36].

5.2 RQ2: How does the source of the code influence the LLMs in test generation?

To explore whether LLMs are more easily misled by the code they generate themselves (Own)
compared to directly using source code produced elsewhere (Others), for each LLM, we compare the
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P_T_CC P_T_IC

def generate_integers(a, b): def generate_integers(a, b):
Given two positive integers a and b, Given two positive integers a and b,
< return the even digits between a < return the even digits between a
and b, in ascending order. and b, in ascending order.
For example: For example:
generate_integers(2, 8) => [2, 4, 6, 8] generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8] generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => [] generate_integers(10, 14) => []

win

# Ensure a is less than or equal to b

lower = max(2, min(a, b)) if a > b:

upper = min(8, max(a, b)) a, b=>b, a

return [i for i in range(lower, upper+1) return [x for x in range(a, b + 1) if x %
— if i % 2 == 0] — 2 ==10]

Test Case (P_T_IC)
Test Case (P_T_CC)

assert generate_integers(2, 8) == [2, 4, 6, 8]

assert generate_integers(2, 8) == [2, 4, 6, 8] assert generate_integers(1, 7) == [2, 4, 6]
assert generate_integers(8, 2) == [2, 4, 6, 8] assert generate_integers(4, 4) == [4]

assert generate_integers(10, 14) == [] assert generate_integers(5, 5) == []

assert generate_integers(3, 7) == [4, 6] assert generate_integers(8, 2) == [2, 4, 6, 8]
assert generate_integers(5, 5) == [] assert generate_integers(10, 14) == []

assert generate_integers(9, 0) == [] assert generate_integers(-4, 2) == [-4, -2, 0,
assert generate_integers(0, 2) == [2] — 2]

assert generate_integers(-2, 2) == [2] assert generate_integers(28, 36) == [28, 30,

< 32, 34, 36]

Fig. 4. Example of prompt-based and completed-code-based test case generation by GPT-4-turbo. The prompt
provides a function skeleton to generate even integers between two given numbers. When generating test
cases directly from the prompt, the GPT-4-turbo correctly focuses on the digits (0-9). In contrast, when
generating test cases from the completed code, GPT-4-turbo considers numbers beyond the digit range (e.g.,
28 and 36), illustrating that the incorrect code affects the test case accuracy when we feed the completed
code into the GPT-4-turbo.

accuracy of test cases generated with 1) P_T_CC with correct code produced elsewhere; 2) P_T_CC
with correct code generated by itself; 3) P_T_IC with incorrect code produced elsewhere; 4) P_T_IC
with incorrect code generated by its own. Then we report the evaluation results by calculating the
diff absolute between the accuracy of P_T_CC - the accuracy of P_T_IC, and diff_relative, i.e.,
diff_absolute/accuracy of P_T_CC. The comparison is based on identical coding tasks.

Test level. Tab. 7 Test level presents the test level results of diff_absolute and diff_relative across
the three datasets. We can observe that with Others provided solutions, the diff_absolute and
diff_relative would be larger than the results based on the LLM itself generated source codes. For
example, the diff_absolute of Others achieves 10.46% in the HumanEval dataset on average for all
models, while the diff_absolute of Own only achieves 7.71%. In addition, we can observe that the
diff_relative of the Others is also higher than the diff_relative of Own on average for all models.
For example, the diff_relative of Others achieves 12.52% in the HumanEval dataset on average for
all models, while the diff relative of Own achieves 9.64%.

Task level. Tab. 7 Task level present the task level results of diff_absolute and diff_relative across
the three datasets. We can observe that similar to the results of Test level, the diff absolute of the
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Table 8. RQ3: Pass rate of the LLM-generated test cases in the incorrect code provided by P_IC.

HumanEval MBPP APPS

Model Test Level Task Level Test Level Task Level Test Level Task Level

| PcC PIC PCC PIC| PCC PIC PCC PIC| PCC PIC PCC PIC

Meta-Llama-3-8B 9.57 19.60 15.29 36.47 17.1 20.36 21.6 39.44 3.53 19.15 15.7 61.05
CodeLlama-7b-Python-hf 27.81 30.74 5.88 18.82 16.23 20.93 58.22 27.23 12.86 19.68 29.65 43.60
deepseek-coder-6.7b-instruct 30.92 39.15 10.59 23.53 21.87 26.61 7.51 23.94 18.71 21.58 5.81 10.47
starcoder2-7b 22.93 23.80 10.59 23.53 21.94 27.56 10.33 23.00 14.45 23.62 5.23 28.49
Codestral-22B-v0.1 45.5 46.64 20.0 22.35 28.56 29.82 18.31 17.84 23.23 30.89 3.49 18.60
GPT-3.5-turbo 8.45 41.20 5.88 24.71 27.51 31.57 20.19 23.47 21.8 28.31 7.56 14.53
GPT-3.5-turbo-1106 10.03 39.73 8.24 27.06 27.05 31.55 19.25 24.41 25.80 24.52 9.88 13.95
GPT-4-turbo-preview 44.33 58.86 27.06 45.88 31.47 42.82 23.47 43.19 29.56 55.47 7.56 39.53
GPT-4 43.63 55.86 23.53 38.82 28.14 40.13 22.07 38.03 26.09 49.70 12.79 51.74
Claude-3-sonnet 39.63 46.18 20.0 22.35 24.16 31.48 11.27 17.37 21.48 35.79 4.07 25.00
Claude-3-haiku 54.72 54.84 42.35 35.29 34.43 35.10 31.46 29.11 53.44 46.45 42.44 40.12
Overall 30.68 41.51 17.22 28.98 25.31 30.72 22.15 27.91 22.81 32.29 13.11 31.55

Others is also higher than the diff_absolute of the Own on average for all models across three
datasets. For example, the diff_absolute of the Others achieves 20.15% on average for the HumanEval,
while the diff _absolute of the Own achieves 17.95%. Furthermore, we can also observe that the
diff_relative of Others is also higher than the diff_relative of Own on average for all models across
three datasets. For example, the diff _relative of Others achieves 29.34% in the HumanEval dataset
on average for all models, while the diff_relative of Own achieves 21.76%.

Answer to RQ2: LLMs are less likely to be misguided by their own-generated code. For example,
the diff_absolute of Own is only 7.71% for the test in the HumanEval dataset on average across
all models, while the diff_absolute of Others achieve 10.46%.

5.3 RQ3: To what extent are LLMs misguided by the incorrect code in the prompts in
test generation?

To investigate whether LLMs align with incorrect code and generate test cases that incorrectly pass,
we evaluated the pass rate of test cases generated by P_CC and P_IC on the incorrect code provided
by P_IC®. The evaluation results, presented in Tab. 8, demonstrate that LLMs tend to align with the
incorrect code and generate test cases that inappropriately pass the incorrect implementations. For
instance, in the HumanFEval dataset, the average pass rate of P_IC-generated test cases across all
LLMs at the test level is 41.51%, while P_CC achieves only 30.68%. In addition, the average pass rate
for all LLMs of P_IC-generated test cases achieves 28.98% in the HumanEval dataset at the task
level, but P_CC-generated test cases only have 17.22%, which further demonstrates that LLMs tend
to generate incorrect test cases to pass the provided incorrect code.

Answer to RQ3: Incorrect code misleads LLMs into generating more test cases that pass the
incorrect code. For example, in the HumanEval dataset, the test pass rate on incorrect code is
41.51% with tests generated with P_IC, but is only 30.68% with tests generated with P_CC.

5.4 RQ4: Do our observations hold for real-world code?

To analyze whether the prompts affect the test case effectiveness in real-world tasks, we conducted
experiments on 10 tasks selected from BugsInPy [64]. Since the collected functions can only be

8We do not use accuracy as a measure for the passed tests since the source code being evaluated is incorrect.
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Table 9. RQ4: Effectiveness of test cases generated by LLMs using different source code-guided test case
generation in the BugsInPy dataset.

Accuracy Coverage Bug Detection
Model Test Level Task Level Test Level Task Level Test Level Task Level

| pPcc PIC PCC PIIC| PCC PJIC PCC PIC| PCC PIC PCC P_IC

Meta-Llama-3-8B 6.98 8.57 0.00 0.00 22.04 22.04 0.00 0.00 0.00 0.00 0.00 0.0
CodeLlama-7b-Python-hf 7.84 4.17 0.00 0.00 22.10 21.98 0.00 0.00 10.00 0.0 0.00 0.00
deepseek-coder-6.7b-instruct 15.56 24.53 0.00 0.00 22.04 21.98 0.00 0.00 0.00 0.00 0.00 0.00
starcoder2-7b 0.0 2.13 0.00 0.00 21.73 21.98 0.00 0.00 0.00 0.00 0.00 0.00
Codestral-22B-v0.1 34.62 32.0 0.00 0.00 22.10 22.04 0.00 0.00 10.00 0.0 0.00 0.00
GPT-3.5-turbo 23.33 15.15 0.00 0.00 22.10 22.04 0.00 0.00 10.00 0.0 0.00 0.00
GPT-3.5-turbo-1106 18.75 20.00 0.00 0.00 22.10 22.04 0.00 0.00 10.00 0.0 0.00 0.0
GPT-4-turbo-preview 22.22 21.43 0.00 0.00 22.04 22.36 0.00 0.00 0.00 0.00 0.00 0.00
GPT-4 23.25 21.37 0.00 0.00 22.31 20.16 0.00 0.00 10.00 0.0 0.00 0.00
Claude-3-sonnet 16.44 19.35 0.00 0.00 22.10 22.04 0.00 0.00 10.00 0.0 0.00 0.00
Claude-3-haiku 13.00 11.0 0.00 0.00 21.73 19.14 0.00 0.00 0.0 10.00 0.00 0.00
Overall 16.54 16.34 0.00 0.00 22.01 21.79 0.00 0.00 5.45 0.91 0.00 0.0

classified into P_CC and P_IC, we then report the evaluation results for P_CC and P_IC of the
effectiveness of the test case.

The evaluation results are shown in Tab. 9, where we can observe that first, for the test level
evaluation, the effectiveness of the test cases generated by P_CC is higher than P_IC for most of
the experiments. For example, we can observe that the accuracy of test cases generated by P_CC
achieves 16.54%, while test cases generated by P_IC only achieve 16.34% on average for all models.
Next, the code line coverage of test cases generated by P_CC achieves 22.01%, while test cases
generated by P_IC only achieve 21.79% on average for all models. Furthermore, we can also observe
that the bug detection effectiveness of test cases generated by P_CC achieves 5.45%, while P_IC
only achieves 0.91% on average for all models for the accuracy of task level.

Although the average accuracy and coverage of test cases generated by P_CC are higher than
those generated by P_IC, the difference between the two prompts is minimal. For instance, the
difference in accuracy and coverage between P_CC and P_IC is only 0.20% and 0.22%, respectively.
This can be attributed to the large number of input tokens in BugsInPy’s tasks. The average input
tokens for P_CC and P_IC are 1092.2 and 904.0, respectively, which is significantly higher than the
average input token usage in HumanEval, which requires only 58.85 and 59.81 input token usage,
respectively. As demonstrated by Levy et al. [35], longer input tokens can negatively impact the
reasoning effectiveness of LLMs. Consequently, LLMs struggle to generate high-effectiveness test
cases for both prompts, resulting in similar evaluation results.

Answer to RQ4: Incorrect code impacts the ability of LLMs to generate more effective test
cases compared to the correct code. For example, providing correct code in the prompt yields
5.45% bug detection effectiveness on average for all LLMs in the test level, while providing
incorrect code only achieves 0.91% bug detection results.

6 DISCUSSION

6.1 Correlation between the code generation capability of LLMs and their ease of being
misled during test generation

We provide the correlation between the code accuracy (%) and the test accuracy (%) generated by
LLMs in Tab. 10. We can observe that there exists a negative correlation for the code accuracy (%)
and the test accuracy (%) generated by LLMs for P_IC, where the r ranges from -0.49 to -0.92 for
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Table 10. Correlation between the code generation capability of LLMs and how easily their test generation
can be misguided. The results are presented in correlation (p-value) format.

Prompt Pearson | Spearman | Kendall’s tau
P HumanEval MBPP APPS ‘ HumanEval MBPP APPS ‘ HumanEval MBPP APPS
P_T -0.75 (0.01)  -0.48 (0.14) 0.29(0.39) | -0.65(0.03)  -0.75 (0.01) 0.26 (0.43) | -0.51(0.03)  -0.59 (0.01) 0.13 (0.65)

P_T_CC | -0.77(0.01)  -057(0.07)  -0.53(0.09) | -0.59(0.05) -0.72(0.01)  -0.55(0.08) | -0.44(0.06) -0.56 (0.02)  -0.45(0.06)
P_T_IC | -045(0.16)  -0.59(0.06)  -0.08(0.82) | -0.36(0.27)  -0.25(0.46)  -0.26 (0.43) | -0.22(0.35)  -0.22(0.34)  -0.13(0.65)
p_cc 20.21(0.53)  -0.88(0.00)  -0.57(0.06) | -0.26(0.44) -0.80(0.00)  -0.55(0.08) | -0.18(0.43) -0.64(0.01)  -0.38(0.12)
p_IC -0.89(0.00)  -0.92(0.00)  -0.62(0.04) | -0.66(0.03) -0.87 (0.00)  -0.65(0.03) | -0.55(0.02) -0.75(0.00)  -0.49 (0.04)
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Fig. 5. CodeBLEU scores of GPT-3.5-turbo generated test cases across five executions.

three correlations, and the p-value ranges from 0.00 to 0.04 in our correlation experiments. Next,
we can also observe that the p-value of other experiments of other prompts and datasets is always
larger than 0.05, indicating that there is no significant correlation between the code accuracy (%)
and the test accuracy (%) for these prompts and datasets.

6.2 Randomness of LLM-generated test cases

LLMs are non-deterministic for constrained inputs, which means that the response to the same
input may vary across different executions. In our study, we attempt to utilize greedy decoding
to constrain the response of the LLMs for the same input to produce identical results. We set the
temperature to 0, Top K to 1, and Top P to 1. In this section, we analyze whether greedy decoding
can ensure consistent results by calculating the CodeBLEU scores of GPT-3.5-turbo generated tests
across five different execution times. The evaluation results are presented in Figure 5. We can
observe that the CodeBLEU scores of GPT-3.5-turbo for five different executions are consistently
above 85.3% for each pairwise comparison. However, the scores do not reach 100% between any
two execution times, indicating that there is still some variation in the generated tests despite the
use of greedy decoding.

6.3 Implications for researchers and developers

Based on our findings, we present implications for researchers and developers utilizing LLMs for test
case generation. Most importantly, our findings indicate that LLM-based testing is more effective
at generating tests that protect mature code from regression errors. However, when applied during
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the early stages of software development on relatively immature code, it is more likely to reinforce
existing errors.

Prioritizing correct code and task descriptions is crucial, as our results demonstrate that providing
both to LLMs yields the most effective test cases. However, if the correctness of the source code
cannot be guaranteed, providing only the task description can still lead to better results than
providing incorrect code.

In addition, it is essential to be cognizant of LLM limitations when working with real-world
code, as the effectiveness of LLM-generated test cases is significantly lower in complex, real-world
scenarios compared to simpler benchmark datasets (e.g., longer context, function call, and class
level tasks), highlighting the need for further research to improve the effectiveness of LLMs in
generating test cases for long-context, real-world tasks.

7 THREAT TO VALIDITY

The threat to internal validity lies in the implementation of the empirical study and the analysis
of the evaluation results. To reduce the first threat, the authors carefully checked the code twice
during the implementation stage and experiment result analysis stage. To reduce the second threat,
the two authors independently analyzed the experiment results and drew experimental conclusions
separately. In cases where the conclusions differed, a third, more senior author was consulted to
discuss the findings and determine the final result.

The threat to external validity lies in the datasets and the measure tool used in our study. To
reduce the threat in our study, we select the three most widely used datasets (i.e., HumanEval,
MBPP, and APPS,) and one real-world dataset (i.e., BugsInPy) in code generation tasks to measure
the effectiveness of LLM-generated test cases. The evaluated subset for each dataset is checked
by analyzing whether each task has an incorrect code in all LLM-generated code that can be used
for P_T_IC. To measure the accuracy of LLM-generated tests, we also use the evaluation tool of
HumanEval to ensure the results are correct. Besides, we also use coverage.py to measure the
code line coverage of LLM-generated test cases in the correct code, where coverage.py is also
widely used by developers and can be relied upon to provide accurate results.

The threat to construction validity lies in the randomness of LLM-generated responses. Since
LLMs are non-determinized for their generated response in several different executions with the
same input [52]. To reduce the randomness of LLM-generated response that would be used to
measure the effectiveness of test cases. We use greedy decoding in all of the steps where LLMs
would used to generate the response. Moreover, we provided the CodeBLEU results of five different
executions of generated tests to demonstrate that our results can reduce the randomness in our
experiments, enhancing the overall reliability of our findings.

8 CONCLUSION

In this paper, we present the first empirical study on how source code affects the effectiveness of
LLM-generated test cases in code generation tasks. We evaluate the effectiveness of test cases by
measuring their accuracy, coverage, and bug detection effectiveness across three widely studied
code generation datasets, (i.e., HumanEval, MBPP, and APPS), and one real-world GitHub patching
dataset (i.e., BugsInPy). Our evaluation results in five open-source and six closed-source models
demonstrate that the effectiveness of LLM-generated test cases is highly affected by the prompts
used. Providing task descriptions with correct code in the prompt generally leads to higher test
case accuracy, better code coverage, and higher bug detection rates compared to other prompts.
For example, P_T_CC achieves 80.45% test case accuracy in the HumanEval dataset on average
for all LLMs in the test level but other prompts only achieve 64.05% accuracy in the HumanEval
dataset. Next, we can also observe that P_T_CC also has higher code line coverage compared to
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other prompts. For example, the average code line coverage for all models of P_T_CC achieves
94.18% in the APPS dataset for the test level, while the average code line coverage of other prompts
only achieves 91.96%. Additionally, the bug detection effectiveness of LLM-generated test cases
has a similar trend for accuracy and code line coverage. For example, the average bug detection
effectiveness of P_T_CC achieves 51.43% in the APPS dataset, while other prompts only achieve
41.44% bug detection effectiveness.

9 DATA AVAILABILITY

We release our source code, datasets, and results in https://anonymous.4open.science/r/FSE2025-
360/.
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