Statement on Research

Preetha Chatterjee

My research interests are primarily in software engineering (SE), with an emphasis on improving software engineers
tools and environments through data mining, text analysis and machine learning. | am especially interested in
mining software repositories to build or improve tools for software engineers and analyzing the availability and
quality of information in developer communications. | am also broadly interested in empirical software engineering.

My research takes a significant step to positively impact new research directions on mining previously un-
explored resources in SE, and have been published in top venues including ICSE [1], 4] and MSR [3, 5, [6]. |
build tools based on evidence from quantitative and qualitative empirical studies, and adapting state-of-the-art
techniques from the fields of Natural Language Processing and Machine Learning. | support open science, and
have contributed openly available scripts/datasets for reuse by the SE community [3]. In this statement, | present
an overview of my PhD research, future research directions, and my experience in industry-academia collaboration
in conducting research.

PhD Research Overview

Integrated development environments today include sophisticated program modeling and analyses behind the
scenes to support the developer in navigating, understanding, and modifying their code. While much can be
learned from the results of static and dynamic analysis of their source code, developers also look to others for
advice and learning. As software development teams are more globally distributed and the open source community
has grown, developers rely increasingly on written documents for help they might have previously obtained through
in-person conversations. My research activities cover (a) conducting empirical studies to analyze the information
in written documents of software archives, and (b) designing techniques to mine useful information from the
software archives which could be used in building/improving software maintenance and evolution tools.

Empirical Analysis of Software Artifacts

a) Learning about Code Snippet Characteristics in Software Artifacts [8]: Large corpora of software-related
artifacts (e.g., blogs, bug reports, emails) offer the unique opportunity to learn from developers' discussion about
code snippets. | conducted an empirical study of 12 types of artifacts to investigate: 1) characteristics of the
embedded code snippets, 2) kinds of information available across all artifacts, and their frequency and distribution
of availability, and 3) textual cues that indicate code-related information, and how the cues differ across artifacts.
The analysis shows that, occasionally individual words are adequate cues for a given kind of information (e.g., name
of a programming language). More often, a cue requires a phrase or sequence of words (e.g., indication of code
clarity: ‘see how much cleaner it is!"). Since these phrases are different across information types, automatically
detecting different code-related information embedded in the text would require natural language processing and
machine learning. The results provide preliminary indications to the software artifact mining research community
regarding the document types that would serve as the most fruitful sources for specific kinds of information.

b) Studying Developer Focus on Question and Answer (Q&A) Forums [7]: Although popular Q&A forums such
as Stack Overflow serve as a good knowledge resource, the abundance of information can cause developers to
spend considerable time in identifying relevant answers and suitable fixes. | conducted an exploratory study to
understand how novice software engineers direct their efforts and what kinds of information they focus on within
a Stack Overflow post. | qualitatively analyzed the software engineers’ perceptions and annotations from a survey
involving 400 Stack Overflow posts related to errors and exceptions in Java and C++. The results indicate that
software engineers pay attention to only 27% of code and 15-21% of text in a post to understand and determine
how to apply the relevant information to their context. The results also discern the kinds of information (e.g.,
cause of error) prominent in that focus. These results can be leveraged to improve the Q&A forum interface,
guide tools for mining forums, and potentially improve granularity of traceability mappings involving forum posts.

¢) Understanding the Potential Usefulness and Challenges of Mining Information from Developer Chats [5]:
Popular chat platforms such as Slack host public chat communities that focus on specific software development
topics such as Python or Ruby-on-Rails. | conducted an exploratory study into the potential usefulness and
challenges of mining developer Q&A format chat conversations for supporting software maintenance and evolution
tools. The findings of this study indicate significant prevalence of useful information (e.g., APl mentions) in



Preetha Chatterjee Research Statement

developer chats, which could potentially be used for helping developers and in building mining-based software
maintenance tools. The lack of inbuilt formal Q&A mechanisms on chats result in potential mining challenges,
such as automatically identifying an accepted answer. Part of this challenge stems from the free-form style of
chats, in which a question may be followed by a series of clarification or follow-up questions, and contextual clues
must be followed to determine which question is ultimately being answered. We also observed that developers
use chats to share opinions on best practices, APls, etc. Stack Overflow explicitly forbids the use of opinions.
The availability of such valuable information in chats may lead to new mining opportunities for software tools.

Mining Source Code Descriptions from Research Articles

Digital libraries of computer science research articles can be a rich source for code examples that are used to
motivate or explain particular concepts or issues. | designed a technique to automatically identify natural language
descriptions of code segments embedded within articles. Extracting these natural language descriptions alongside
code will enable new advances in areas including code-based search, automatic code comment generation, and
documentation generation. Mining code descriptions from research articles presents challenges beyond those faced
in mining from unstructured documents such as forums, bug reports, and emails. Code segments in research articles
are sometimes embedded within the text, but often separated as figures that are located in a different section or
different page. Because research articles often contain multiple code segments, it is necessary to associate each
code segment with its corresponding natural-language description. | advised two undergraduate mentees to design
and evaluate a set of heuristics that address these challenges. We created an automatic tool that produces XML-
based representations with markups to associate identified code segments with their corresponding descriptions.
Our work takes a step towards unleashing the potential to mine the vast number of computing articles in digital
libraries for code segments and extract descriptive information about functionality and properties of segments [6].

Mining Information from Developer Chat Conversations Towards Building Software Maintenance Tools

The emerging trend of increased participation in developer chats (e.g., Slack, IRC) and evidence from my previous
empirical studies [5] [8] motivated me to develop techniques to extract useful knowledge available in developers’
chat communication channels. Specifically, i) | created and published an openly available dataset of software-
related chat conversations, ii) designed approaches towards automatically analyzing the quality of information in
chats using supervised machine learning techniques and natural language analysis, and iii) developed automatic
techniques to extract opinion-based questions and answers from chats using deep learning architectures.

e Different from many sources of software development-related communication, the information on chat forums
is shared in an unstructured, informal, and asynchronous manner. There is no predefined delineation of conver-
sation in chats; multiple questions are discussed and answered in parallel by different participants. Therefore,
a technique is required to separate, or disentangle, the conversations for analysis by researchers or automatic
mining tools. We customized an existing supervised machine-learning based disentanglement algorithm, and
published a publicly available dataset of software-related Q&A chat conversations, curated for two years from
three open Slack programming communities [3]. Our dataset consists of 39k conversations, 400k messages,
contributed by 12k users. This dataset could potentially facilitate further research on developing software
support and maintenance tools, training and designing chatbots for software development activities, etc.

e Assessing the quality of information in a mining source is crucial towards building effective software engineering
tools. Since most chat platforms do not contain built-in quality indicators (e.g., accepted answers, vote counts),
| developed an approach for automatically determining the quality of developer conversations [2]. First, a data-
driven approach was adopted to investigate conversation quality. We conducted a study where 60 software
engineers were recruited to judge the quality of 400 conversations. The analysis of the study led to a set
of properties that are generally observable about conversations of varying quality. | trained multiple machine
learning-based classifiers (e.g., Stochastic Gradient Boosted Trees, Sequential Neural Networks) with a total of
32 features that are closely related to the observed properties of varying quality conversations. Evaluation of
2000 developer conversations indicated that my approach can achieve a precision of 0.82, and recall of 0.90.




Preetha Chatterjee Research Statement

This research could advance the field of information mining towards building software maintenance tools by
using high-quality information from software development conversations.

e Recognizing the increasing capabilities of conversational artificial intelligence, researchers are working towards
building virtual assistants that support SE tasks (e.g., bug repair, pair programming). | explored the feasi-
bility of using developer chats as a resource towards building opinion-providing virtual assistants for software
engineers. Sophisticated virtual assistants often integrate specialized instances including dialog management,
knowledge retrieval, opinion-mining, and question-answering. Towards that end, | developed an approach to
automatically Extract Opinion-based Q&A from Chats (ChatEO) [4]. ChatEO has two modules: (1) automatic
identification of opinion-asking questions (questions that ask for opinions from other chat participants) using a
linguistic pattern-based technique, and (2) extraction of participants' answers to opinion-asking questions using
a sequence-to-sequence deep learning-based model. ChatEQO opinion-asking question identification significantly
outperformed existing sentiment analysis and pattern-based techniques. ChatEQO answer extraction showed
improvement over existing answer sequence labeling technique designed for non-SE artifacts. The better per-
formance in answer extraction is attributed to capturing the context of discussion in chats through Bidirectional
Long Short Term Memory (BiLSTM), and using a customized word embedding model. This model does not
require complex feature engineering, and could be used to extract answers to other types of questions in SE
chats. Beyond reducing developers effort on information gathering, ChatEO could help in increasing developer
productivity, improving code efficiency, and building better recommendation systems.

Future Research

Short-term Research Directions:

Improving Developer Communication Quality. With developers’ and software tools’ heavy reliance on
written developer communications, and the open social nature of these sources, the quality of the information
being shared is an important concern. Specifically, developers are often concerned with judging the reliability and
credibility of information sources. | am interested in developing automated approaches to assess and improve the
quality of information shared on developer communication channels with respect to lack of detail, poor software
properties, obsolescence, contradicting information, and duplication.

Developing Feedback Mechanisms. To assist software engineers in their daily tasks, my goal is to design
and actuate improvements in the developer communication mediums through feedback mechanisms. One possible
research approach is to develop bots, i.e. software applications that run automated tasks. Conversational bots act
directly on natural language commands and requests, often integrating services that provide a natural language
processing backend, such as Google's Api.Al, Facebook's Wit.Al, or IBM Watson. Chatbots could monitor a
conversation and participate in various ways, including by posting messages or displaying buttons preconfigured
with specific responses. Building such virtual assistants (e.g., chatbots, voice assistants) could improve code
quality and developer productivity, and thus will be of immense interest to researchers and industry practitioners.

Personalizing Feedback Mechanisms. Communicating by posing or answering questions on developer
forums has a strong personal component, and each participant carries a significant amount of context to a
conversation. This context is often a burden to convey in each individual conversation. For example, in asking
programming-related questions, the version of the programming language is often a relevant context that needs to
be communicated as part of the posed question, as well as the answer. Not communicating this context can lead
to additional conversational overhead, which can invalidate initial responses, or result in the exchange of invalid
information. For the purpose of personalization of feedback, | plan to extract context from recent development
activity (e.g., git commits, IDE interaction) and/or from prior communication (e.g., natural language text).

Long-term Research Directions:

To build better software development and maintenance tools, machine learning and data mining techniques
are used to mine knowledge from various developer artifacts (e.g., source code, bug reports, emails, tutorials,
developer socio-technical online network). This is known as “software analytics” and is one of the promising
research directions in software engineering. The mined knowledge can be used for supporting decisions and




Preetha Chatterjee Research Statement

generating insights, i.e., findings, conclusions, and evaluations of software systems and their implementation,
composition, behavior, quality, evolution, etc. | plan to continue my research in the field of software analytics;
specifically to explore a variety of developer artifacts at a large scale (big software data analysis), extending data
analytics solutions to transform the plethora of information available in software artifacts into actionable nuggets
of knowledge and tools, useful for both software engineers and researchers. Machine/deep learning provide new
tools for addressing software engineering research challenges, and software engineering challenges motivate new
machine learning research. | will be particularly interested in conducting research in the intersection of software
engineering and machine learning. | am also interested in investigating the principles and practices of Human
Computer Interaction (HCI) with a focus on building better tools for software developers and thus improve
programmer experience and productivity.

Research Collaborations

| have collaborated and co-authored papers with researchers from both academia (Virginia Commonwealth Uni-
versity) and industry (ABB Corporate Research). | worked on DARPA’s Mining and Understanding Software
Enclaves (MUSE) project, with the goal of mining different developer communication sources to extract tagged
code snippets. | assisted my advisor Lori Pollock and her Co-PI in writing an NSF grant proposal titled “Au-
tomatically Enhancing Quality of Social Communication Channels to Support Software Developers and Improve
Tool Reliability”. This grant was accepted, and a major part of my dissertation is supported by this NSF grant.
| plan to continue to expand my research collaborations with industry to find practical problems for my research,
evaluate my research in an industrial context, transfer my research into industry, and obtain financial support for
my research. At the same time, | also plan to seek collaborations with researchers from academia, and apply for

financial support available for research through university, industry and government programs (e.g., NSF CAREER,
CCF-SHF).

References

[1] P. Chatterjee. Extracting Archival-Quality Information from Software-Related Chats. In Proceedings of the 42nd
International Conference on Software Engineering, ICSE '20, New York, NY, USA, 2020. Association for Computing
Machinery.

[2] P. Chatterjee, K. Damevski, N.A. Kraft, and L. Pollock. Automatically Identifying the Quality of Developer Chats for
Post Hoc Use. In Transactions on Software Engineering and Methodology (TOSEM) (In Submission), TOSEM '20,
2020.

[3] P. Chatterjee, K. Damevski, N.A. Kraft, and L. Pollock. Software-related Slack Chats with Disentangled Conversations.
In Proceedings of the 17th International Conference on Mining Software Repositories (MSR), May 2020.

[4] P. Chatterjee, K. Damevski, and L. Pollock. Automatic Extraction of Opinion-based Q&A from Online Developer
Chats. In Proceedings of the 43rd International Conference on Software Engineering, ICSE '21, 2021.

[5] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N.A. Kraft. Exploratory Study of Slack Q&A Chats as a
Mining Source for Software Engineering Tools. In Proceedings of the 16th International Conference on Mining Software
Repositories (MSR), May 2019.

[6] P. Chatterjee, B. Gause, H. Hedinger, and L. Pollock. Extracting Code Segments and Their Descriptions from Research
Articles. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), pages 91-101,
May 2017.

[7] P. Chatterjee, M. Kong, and L. Pollock. Finding Help with Programming Errors: An Exploratory Study of Novice
Software Engineers’ Focus in Stack Overflow Posts. In Journal of Systems and Software (JSS), JSS '20, 2020.

[8] P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pollock, and N. A. Kraft. What Information About Code
Snippets is Available in Different Software-related Documents? An Exploratory Study. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages 382-386, Feb 2017.




