
Research Statement

Adam Chlipala

The basic question that I want to explore is, what is the ideal architecture for software

systems, given all of the new capabilities that mechanized theorem-proving has brought us?

Today, much programming goes on in “general-purpose languages” which make most

programming tasks too difficult and also make it too difficult to build confidence that

programs will work correctly. I would like to separate these desiderata and make them the

basis of a slogan: verification for systems, synthesis for applications.

Computer proof assistants are rapidly gaining popularity among researchers in programming

languages and other software-centric specialties. These tools make it possible to construct

completely rigorous mathematical proofs of a wide variety of theorems, from the four-color

theorem to the full functional correctness of particular programs. Such a proof can be

checked by a small proof-checking program, which understands only a small number of

problem-independent axioms and can thus be made very trustworthy.

Formal verification of this kind has a reputation of not being cost-effective. My work departs

from standard practice, in ways that dramatically increase cost-effectiveness. For systems

which admit understandable specifications, I have focused on techniques for raising the level

of abstraction in proofs, replacing long sequences of low-level reasoning steps with more

human-readable descriptions that can adapt to the proofs of many related theorems. Several

of my projects have shown how this style of proving can reduce the costs of evolving verified

programs to the point where formal proof may even be cheaper than rigorous testing. I have

also taken a technology that has historically been confined to proof assistants, namely

dependent type systems, and incorporated it into a very practical language for Web

application development. This language implementation also uses proof automation in several

different ways, so that programmers can check important properties of their applications,

without needing to spend much time on tasks whose only purpose is to help the compiler

check a program.

Past and Current Projects

Formal Correctness Verification of Programming Language Tools

The first part of my PhD thesis was a library for building memory safety verifiers for x86

machine code [1]. This was a library for the Coq proof assistant, providing support for formal

proof that any program accepted by a verifier really is memory-safe. Each verifier was

organized as a tower of components that successively raised the level of abstraction. For

instance, different components add support for understanding the call stack, conditional

instructions, and custom type systems.

The second part of my thesis dealt with compiler verification. Most work in that area has

considered compilers for low-level languages like C. My interest has mostly been in verifying

2025/6/26 00:10 Research Statement

adam.chlipala.net/app/res.html 1/7



compilers for higher-level languages with higher-order features. The verification from my

thesis [2] is for a compiler for a small statically-typed functional language. This was the first

formal verification considering a compiler that is type-preserving; that is, the intermediate

languages of the compiler retain type information, and output assembly programs pass that

information to a garbage collector interface. The final, machine-checked theorem of this

work is that, if a source program exits with a particular return code, then its compiled version

also exits with the same code. The structure of the proof mirrors the structure of the

compiler, which uses the classic functional programming language transformations of

conversion to continuation-passing style and closure conversion. The proof must argue that

type information is used correctly in driving garbage collection, where the collector is

specified at a lower, language-independent level.

My most recent work in this area [6] involved a more ambitious case study, where I applied a

novel syntax representation [3] to a more realistic language in a compiler that performs some

optimization. The compiler’s input language is an untyped “Mini-ML” language that retains

the key semantically-interesting features of the ML language family, including first-class

higher-order functions, exceptions, and heap-allocated, linked, mutable data structures. This

was the first formal compiler verification for a language that combines higher-order features

with side effects, yet the proof was an order of magnitude simpler than those previously

published for formal verification of realistic, side effect-free functional languages. The full

development includes under 2000 lines of proof script, almost all of which describes

theorem-specific proof-finding programs, rather than details of proof cases. These programs

proved to be very adaptive in the face of the evolution of the compiler and its specification.

For instance, I was able to add some features to the source programming language without

changing a single line of proof.

Ur/Web, a Domain-Specific Programming Language for Web Applications

Most Web applications today are implemented in general-purpose languages. These are

usually dynamic languages, where the language tools provide very little support for static

checking. I have designed the Ur/Web language to demonstrate how to bring pervasive static

checking to this domain without giving up flexibility. Programs in this domain-specific

language type-check only when they “make sense” as Web applications, with no faulty intra-

application links, no syntax or typing errors in communication with a database back-end, and

so on. Security bugs like code injection vulnerabilities are also ruled out naturally.

Prior work by others has considered several ways of achieving this kind of result. In this

project, I have gone further by adding support for statically-typed metaprogramming [5],

where an Ur/Web function can produce pieces of applications customized to database

schemas and other dimensions of variation. Metaprogramming for the Web is already in wide

use with dynamic languages. Ur/Web supports the popular kinds of metaprogramming found

in the wild today, and any Ur/Web metaprogram that type-checks will never produce an

application piece that violates the rules sketched in the prior paragraph.

My work starts with a core statically-typed language Ur, whose type system is expressive

enough to encode the validity rules of HTML and SQL in the type signatures of libraries. The

Ur type system is based on ideas usually only found in dependently-typed programming

languages, which have tended to provide very limited type inference. A customized inference

2025/6/26 00:10 Research Statement

adam.chlipala.net/app/res.html 2/7



engine for Ur applies theorem-proving techniques heuristically such that it is possible to write

sophisticated metaprograms without doing anything that feels like formal verification.

In Ur/Web, program elements like SQL database access are represented very explicitly, which

enables some very useful sound program analyses. For instance, I have implemented the

UrFlow analysis [4], which does static checking that Ur/Web applications follow information

flow and access control security policies. UrFlow uses a new approach to policy specification,

where policies are SQL queries that, in a sense, select allowable program behaviors. An

information flow policy, which specifies which information clients are allowed to learn, is an

SQL query that selects a subset of the database which is safe to reveal. To support

authentication, policies may refer explicitly to which secrets the user knows, where the user is

only presumed to know values contained in the request his Web browser sends. This primitive

enables handling of a variety of access control schemes, without requiring any program

annotations or run-time instrumentation.

Cost-Effective Verification of Low-Level Programs with Interactive Theorem-

Proving

The Ynot project supports the implementation and formal verification of higher-order

imperative programs in Coq. I led a reimplementation of Ynot with a focus on proof

automation [7]. To verify simple data structures, the previous version had required tens of

lines of proof per line of program code. The new version provides a library of parameterized

proof procedures that can discharge most verification obligations completely automatically.

The programmer proves a set of lemmas about his data structure and then feeds them into

the generic procedure, which applies the hints as needed. With this style of proof, the

development cycle changes dramatically, as formal verification of a new function for an

established data structure can actually take less effort than building a credible test suite.

Ynot supports all of Coq’s high-level language as a subset of the imperative programs. I am

now working on a Coq framework called Bedrock, which brings the Ynot proof style to

programs that are more suitable for implementing the lowest levels of software stacks.

Several recent projects by others have verified assembly code for pieces of operating

systems. Each of these projects falls into one of two main categories. The more traditional

category relies on automated theorem provers, which requires trust in large amounts of

complicated prover code and fails to handle some kinds of higher-order reasoning that are

very helpful in systems infrastructure. The other category uses general-purpose proof

assistants that have small, trustworthy proof checkers, at the expense of verification that may

involve hundreds of lines of proof per line of program code. With Bedrock, I have replicated

some of the results from this latter category, but with completely automated proofs, reducing

the verification cost by orders of magnitude while retaining the benefits of general-purpose

proof tools. For instance, I have built a simple verified cooperative threading library in 250

lines of code, including program code, specifications, and proofs.

Future Directions

Verification for Systems

2025/6/26 00:10 Research Statement

adam.chlipala.net/app/res.html 3/7



For the code that forms the foundation of our software systems, we should demand

languages and tools that provide excellent support for formal verification. A common

complaint against formal verification is that it requires formal specifications, which can be

prohibitively expensive to build. One surprising thing about systems software verification is

that specifications are often very short and comprehensible. For instance, the correctness of

a compiler can be phrased solely in terms of semantics of the source and target languages,

and we can say an operating system kernel is correct when its proof may be used as a lemma

to establish the correctness of arbitrary applications running on top of it.

Most systems infrastructure is used often enough that, to me, the cost of formal verification

seems well justified. I also think that this cost can be brought much lower than the standard

wisdom assumes, and I hope my work on compiler and data structure verification has

provided a hint on how proof costs may be kept down. Furthermore, we need not stop at

verifying the same old kinds of software that exist today. We can come up with new, simpler

designs that integrate verification thoroughly. For example, using the technique of proof-

carrying code [9], we can enforce that a particular OS kernel will only run applications about

which certain key properties have been proved formally. In such a setting, we can do away

with all hardware mechanisms for protecting software from software, and we can do away

with the systems code that drives those mechanisms.

Concretely, I would like to develop proof-of-concept platforms for mobile phones and shared

“cloud computing” servers, based on pervasive use of proof-carrying code. Operating system

designs like those coming out of the exokernel project have provided resource multiplexing

without abstraction. Still, these systems export specific run-time interfaces and use much of

traditional hardware protection. Performance goals force the addition of complexity, such as

the use of fixed packet filter languages to support high network throughput. I would like to

explore an alternate approach, where “the kernel” has almost no run-time code. Rather,

traditional protection functions are the responsibility of a general-purpose mathematical

proof checker. Specifications formalize which hardware resources are available and how each

program would like to use those resources. Each program must come with a formal proof that

its claims are accurate. Application authors would be free to design their own abstractions,

without any requirement of compatibility with a fixed run-time interface.

This architecture seems generally useful in computer systems, but I see an especially

convincing match for the settings I mentioned above. On mobile phones, severe resource

constraints mean that there is much to be gained by minimizing the use of hardware

protection or software bloat that results from conforming to fixed system abstractions. There

are also thriving ecosystems of untrusted applications for systems like the iPhone and

Android. The iPhone App Store in particular is notorious for an arbitrary-seeming process of

manual application approval by a team at Apple. There are good reasons for consumers to

want oversight of applications, to prevent blatant security problems. However, with a

pervasive proof-carrying code architecture, applications can be constrained cheaply, with no

human inspection, based entirely on checking of formal proofs provided by app authors. The

most untrusted application can be run with no run-time monitoring or other consumer-visible

overhead. The flexibility of mathematical proof leaves all of this compatible with a broad

range of specialized resource-usage policies and a broad range of programming techniques

for adhering to those policies. All of these same arguments apply to shared Internet servers,

where the performance goal is to maximize the number of mutually-untrusting applications

2025/6/26 00:10 Research Statement

adam.chlipala.net/app/res.html 4/7



that can be run per server, rather than maximizing the performance of one application per

phone.

Synthesis for Applications

Most high-profile applications are written in general-purpose programming languages, where

it is often difficult to disentangle the essence of a program from the data structures and

other low-level techniques used to realize that essence. Program synthesis is a venerable

research subject that involves automatic construction of programs from their logical

specifications. The boundary between “specification” and “program in a high-level domain-

specific language” can be blurry, and I am interested in both perspectives.

There has been a lot of work recently on what I call combinatorial synthesis, where programs

are synthesized from specifications via different kinds of reduction to SAT. The most direct

realizations of the idea only apply soundly to programs with finite input domains. I would like

to explore architectures for symbolic synthesis, which would be based more on proof search

in the style of logic programming. Programmers could build libraries of verified recipes for

implementing partial specifications, and an extensible engine would figure out how to

combine these recipes to construct particular programs. One example of recipes would be for

data structure implementations, making the combining engine very similar to a query planner

in a database management system. I envision these data structures being implemented in

Bedrock, building on my past work in cost-effective verification of data structures. The new

contribution would be automatic data structure selection for high-level code that could look

more like mathematics than like most of today’s programs. Where the (smart) brute force

enumeration behind combinatorial synthesis would not be expected to invent splay trees,

symbolic synthesis would allow programmers to implement and verify splay trees as a library

module, such that the overall engine could integrate that data structure with many others,

producing an efficient low-level program with a formal proof of correspondence to the

original.

I also want to continue my work on the Ur programming language family. Currently, Ur/Web is

the only family member, but the domain-independent functionality of Ur is well-delineated. I

would like to study extensible compiler architectures that would make it possible to build new

domain-specific languages on top of Ur as painlessly as possible. This would include parsing

extensions, code generation requirements, and specialized optimization rules. Ur has an

expressive enough type system that I believe many domains could get by without any new

implementation work on type-checking or type inference, but there are also interesting

questions in extensible type inference engines. I would also like to do formal verification of an

extensible compiler, via a proof parameterized on obligations that must be satisfied by the

creators of each new domain-specific language.

A Few More Directions

In general, I’m interested in improving human productivity in mechanized theorem-proving

and language implementation.

Most of the effort in implementing the Ur/Web compiler has gone into debugging a

significant number of compiler passes that are run to simplify uses of abstraction, modularity,

2025/6/26 00:10 Research Statement

adam.chlipala.net/app/res.html 5/7



and higher-order features. Even after much debugging, the compiler still uses significant

amounts of time and memory. I have a hunch that this usage can be reduced by relying on a

framework for automatic combination of declarative specifications of program simplification

rules, and I would like to explore that technique, both in the setting of Ur and for more

canonical functional languages like ML and Haskell.

My work on formal verification of compilers has left me unsatisfied with the options for

reasoning about the syntax of higher-order languages. Several tools today build on a very

attractive formalism called Edinburgh LF [8], but none of these tools provide support for

scripted proof automation. To me, this is a critical weakness, especially when it comes to

combining proofs about syntax with proofs about other mathematical objects. I would like to

aim for the best of both worlds by implementing an LF library in Coq, with associated proof

tactics.

I’m also interested in exploring how my formal proof approach can be applied in further

mathematical domains, including algorithms and complexity theory.

References

[1]

Adam Chlipala. Modular development of certified program verifiers with a proof

assistant. In Proc. ICFP, 2006.

[2]

Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly

language. In Proc. PLDI, 2007.

[3]

Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In

Proc. ICFP, 2008.

[4]

Adam Chlipala. Static checking of dynamically-varying security policies in database-

backed applications. In Proc. OSDI, 2010.

[5]

Adam Chlipala. Ur: Statically-typed metaprogramming with type-level record

computation. In Proc. PLDI, 2010.

[6]

Adam Chlipala. A verified compiler for an impure functional language. In Proc. POPL,

2010.

[7]

Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky.

Effective interactive proofs for higher-order imperative programs. In Proc. ICFP, 2009.

[8]

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J. of

the ACM, 40(1):143–184, January 1993.

[9]

George C. Necula. Proof-carrying code. In Proc. POPL, 1997.

This document was translated from LATEX by HEVEA.

2025/6/26 00:10 Research Statement

adam.chlipala.net/app/res.html 6/7

http://hevea.inria.fr/index.html
http://hevea.inria.fr/index.html
http://hevea.inria.fr/index.html
http://hevea.inria.fr/index.html
http://hevea.inria.fr/index.html


2025/6/26 00:10 Research Statement

adam.chlipala.net/app/res.html 7/7


