Saikat Chakraborty
https://saikatc.info Email: saikatc(@cs.columbia.edu

Research Statement

Software developers around the world spend hundreds of hours writing and maintaining code. Unsurprisingly, in
their work cycle, they do a lot of repetitive works. My research is motivated by building tools and techniques that
reduce software engineering practitioners' burden and increase developer productivity. The "Naturalness" conjecture
suggests source code artifacts (e.g., source code[Hindle'16], code changes[Nguyen'l0, Nguyen'l3, Ray'l5],
bugs[Ray'16]) are repetitive, i.e., follow similar patterns across different programmers, repositories, and
organizations. My research area is Programming Language Processing (PLP) — a coalescence between Software
Engineering (SE) and Machine Learning (ML) aimed at developing methods for analyzing such patterns. My
research philosophy is to improve developer productivity by conducting multi-disciplinary collaborative research
combining Software Engineering, Natural Language Processing, Program Analysis, Security, and HCI. I believe that
my research background in Software Engineering and extensive collaboration with NLP and Security make me
suitable for embracing such a research challenge.

I divide my research focus into two orthogonal perspectives - (i.) source code understanding and (ii.) source code
generation. My research efforts focus on developing ML models specifically catered to programming languages.
While Programming Languages (PL) exhibit strictly defined syntax and semantics, processing PLs (i.e., source code
written by programmers) bring specific challenges. First, a slight change in a source code can drastically change the
functionality of the source code. For instance, in a recent CVE' (CVE-2021-38094), using datatype “in#” instead of
“float” made the code susceptible to integer overflow vulnerability. In fact, a wide number of known security bugs
can be fixed with very small changes in source code. Furthermore, source code can be arbitrarily large with virtually
infinite possible identifier names. The dependencies between code snippets could be highly hierarchical through
function, class, package, project, even third-party libraries. Thus, while developing automation tools to assist
developers, we should consider these properties, and design tools accordingly.

In my Ph.D. career, I have been pursuing the development of Al-driven source code analysis tools. I have developed
tools for Vulnerability Detection [TSE'21], Automated Code Change/Program Repair [TSE'20, ASE"21], Program
Comprehension [ACL'20], Code Generation[ACL'18, NAACL'21, EMNLP'21], Code Translation across PLs
[NAACL"21], Code Search [EMNLP'21, SCAM'19] etc. My research on learning general-purpose source code
representation [NAACL’21] has been on the leaderboard of the Microsoft CodeXGLUE challenge on several SE
automation tasks (i.e., Vulnerability detection, Code translation, Code refinement, etc.)>. My future research interest
is to push the boundary of machine understanding of source code and building tools for improving the software
development pipeline (i.e., building better developer assisting tools) with Machine Learning and Deep Learning.

Learning to Understand Source Code

Automated reasoning about source code requires a profound (machine)-understanding of source code. The success
of automation in various software engineering tasks hinges on such an understanding of code. A machine that
understands source code syntax and semantics can be deployed for different tasks to reduce developers’ burden. For
instance, such a machine can learn vulnerable code patterns from existing vulnerabilities - acting as an extra set of
eyes for ensuring the safety and reliability of software. My research aims at developing robust models for source
code understanding. In order for doing so, I focus on developing new ML models and techniques that account for PL
properties. Here are some of my research illustrating the need to solve the problem of source code understanding.

* Vulnerability detection in source code. With the advent of machine learning in source code analysis, there has
been a paradigm shift towards handing over the responsibility to identify repetitive bugs and vulnerabilities to
data-driven ML systems. Several recent Deep Learning (DL) based studies have demonstrated promising results
achieving an accuracy of up to 95% at detecting vulnerabilities. Such development begs an answer to the question,
"How well do the state-of-the-art DL-based techniques perform in a real-world vulnerability prediction scenario?"
To our surprise, we find that their performance drops by more than 50% when we applied to identify vulnerabilities
in two large-scale software (i.e., Chromium and Debian). Further investigation revealed that if we present source
code as a sequence of tokens to an ML model, there is no way for the model to reason about the syntax and
semantics. In our TSE'21 paper (ReVeal) [TSE'21], we proposed a novel graph-based source code representation
model equipped with the capacity to reason about PL properties. With in-depth investigation, we showed that

1 http://cve.mitre.org/
2 https://microsoft.github.io/Code XGLUE/

Page 1 of 5


https://saikatc.info
mailto:saikatc@cs.columbia.edu
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-38094
https://microsoft.github.io/CodeXGLUE/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2021-38094

Saikat Chakraborty
https://saikatc.info Email: saikatc(@cs.columbia.edu

understanding the core properties of source code is a must for building a usable ML technique for vulnerability
detection. These findings in this paper can be extended to general-purpose bug detection.

In addition to ReVeal, our recent work in collaboration with the IBM research on a robust understanding of code
aims at understanding the functional properties of source code. Executing every piece of code to understand its
functionality is challenging. We solve this problem by drawing inspiration from mutation testing and delta
debugging. We realize that a slight change in a code could make an immense difference in the source code. For
instance, changing a conditional operator from ">" to "<" could drastically change the functionality of code; it could
even trigger a vulnerable backdoor in the source code. On the other hand, completely different (both textually and
structurally) different codes could have the same functionality. For example, the same code can be implemented
both recursively and iteratively, resulting in different structures yet the same functionality. We proposed a robust
technique to learn from such functional contrast. Such source code understanding model showed great promise in
different code understanding tasks, e.g., vulnerability detection, clone detection, etc. The paper is currently under
review, and the preprint is available in arxiv’.

* Code Summarization. Writing (or updating) source code documentation is tedious work developers have to
undergo to ensure the proper maintainability of source code. To ease the burden on the developers, we aimed at
building an automated tool for code summarization. Our research collaboration with Dr. Kai-Wei Chang from
UCLA revealed that developers' written summaries mainly depend on the identifiers and APIs used in the code.
Developers write meaningful API/identifiers, often consisting of many meaningful subtokens. Our ACL'20 paper
showed that deconstruction of identifiers into subtokens can significantly improve automated code summarization
performance. In addition, we also showed that the interpretation of an identifier depends on the local context of the
source code. Thus our model leans toward identifier representation emphasizing the location context.

Learning to Generate/Edit Source Code

Self-correcting software or self-modifying software is one of the key stepping stones for total automation in
software. A software that can — a) identify and repair any potential flaw, or b) change part of its source code
following the previous code-change pattern from the developers. Previous research efforts showed that changes
made by real developers are repetitive. Such repetitive changes enable us to build an intelligent machine that can
learn those code change patterns and apply them wherever necessary. The automatic Code Change task can be
formulated as a translation task, where the intelligent machine will translate a piece of code to a changed code.
Consequently, Machine Translator tools such as Neural Machine Translators (NMT) are a natural fit for this task. At
the heart of such an NMT system, there is an encoder that analyzes the code before editing, and there is a Code
Generator (decoder) that generates the edited code.

In my research, I offer a thorough investigation into the usage of NMT in the Automated Code Change task. Some
key insights guide my studies and subsequent tool development efforts — 1. The tool must understand what the input
code is. The encoder of the NMT must not solely rely on the code lexicons. It should be able to reason (albeit
implicitly) about the input code's syntax and semantics. 2. The Code Generator must generate syntactically correct
code. Any generated code that is not syntactically correct is entirely unusable from a fully automated tool’s point of
view. 3. The Code Generator must make sure that the generated code is contextually correct. The code must — a) use
appropriate names for appropriate identifiers, b) maintain proper usage of APIs, and c) exhibit developers' and
organizational coding practices and rules. Fulfilling this requirement will embellish an automated code editor in the
actual development environment. In light of these insights, we first developed CODIT [TSE'20], collaborating with
Dr. Miltos Allamanis from Microsoft Research. We investigated the syntactic correctness guarantee of generated
code through Context-Free Grammar (CFQG) of the programming language. Using a tree-based model, the decoder in
CODIT samples from the CFG and generates the code's syntax tree. In doing so, it ensures the syntactic guarantee of
the generated code. CODIT shows significant promise in automated code change and automated program repair.

While CODIT successfully generates syntactically correct code, it was not designed to provide any provision to
learn about contextual correctness. Generating code that adheres to such patterns is essential for a fully-automated
system. For instance, consider an Exception Handling code scenario - one context may demand handling the
exception locally, others may pass it to the caller. While both the codes are syntactically correct from CODIT 's
perspective, the ultimate correct code depends on the context. We cannot deterministically say which one CODIT
will prefer to generate over the other. We solve the contextual correctness problem with critical insight into how any
machine learning model works. Conceptually, in any ML model, there are two parts: understanding the input code's
contextual semantics and reasoning about the task at hand. Similarly, in the case of NMT based code change, the

3 https://arxiv.org/pdf/2110.03868.pdf

Page 2 of 5


https://saikatc.info
mailto:saikatc@cs.columbia.edu
https://arxiv.org/pdf/2110.03868.pdf

Saikat Chakraborty
https://saikatc.info Email: saikatc(@cs.columbia.edu

tool should learn — a) understand the code contextual semantics and generate syntactically and contextually correct
code, and b) learn to apply the change patterns. Since the first task does not necessarily depend on the code changes,
we can pre-train an NMT model with raw code samples. Such training aims to train the encoder to understand the
code semantics and train the decoder to generate syntactically and contextually correct code. With all these insights,
we developed PLBART [NAACL'21] in collaboration with Dr. Kai-Wei Chang from UCLA. We leveraged
denoising auto-encoding to pre-train the encoder and decoder. PLBART showed great promise in a wide variety of
downstream software engineering tasks, including Automated Code Change.

We learned a key lesson from the experiences with CODIT and PLBART. While high-level code change patterns are
repetitive, individual code changes are usually much more diverse. Concrete changes that happen to a piece of code
depend on the development circumstances. For a developer, such a piece of information about the circumstances can
be bug/issue reports, test cases, code review comments, etc. We thus take another input (summary of the edit) to
automate code editing. Consequently, we designed MODIT [ASE'21] to incorporate such an auxiliary source of
information, where we showed for editing a piece of code (i) the context is vital to edit a code successfully — often
the edited code collects existing components (e.g., variables, APIs) from the context, and (ii) a description
summarizing the edit could significantly narrow down the search space for code edit generation. We are further
enhancing MODIT by guiding it to generate syntactically and semantically correct code. Currently, I am developing
a model with supervised training to generate syntactically and semantically correct code in collaboration with Dr.
Premkumar Devanbu from UC Davis. In this work, we are proposing to reinforce such correctness while training. In
particular, I propose rewarding the model when it generates syntactically and semantically correct code, penalizing
otherwise. We train the model in such a way that maximizes such expected rewards and minimizes the expected
penalty. Training the model in such a way will both (a) take advantage of pre-training from a large code corpus and
(b) take advantage of auxiliary reward based on generated code quality.

Code Search Augmented Learning

An industry-scale case study [Sadowski et al. '15] showed that developers often use code-search for various
purposes, including understanding the code behavior, solving problems, etc. I divide my research objective in
code-search into two different agendas - (i) developing search techniques for source code and (ii) using search for
solving different developer assistance tasks. Our research found that code search is different from searching a text;
thus, off-the-shelf ranking methods used in traditional search result in sub-optimal solutions in code search. We
presented the empirical study results in an ICSE'18 poster and SCAM'19 paper. We also designed a framework for
automatically selecting the most favorable ranking metric for different software engineering tasks following the
empirical findings [SCAM’19]. In a recent paper [REDCODER, EMNLP-findings'21], we proposed a more generic
deep learning approach for code search given a text query. In particular, we proposed to learn the alignment between
a vector representation of a query text and corresponding source code with supervised learning.

In addition to inventing effective ways to search source code, I also focus on using code search to increase developer
productivity. For instance, when a developer searches for some code in StackOverflow, they often have to modify
the search result to use in their particular need. As such, in our EMNLP paper, we proposed a search augmented
code generation technique, REDCODER. Given a natural language query, REDCODER first searches for relevant
code using the search tool engineered explicitly for code searching. We then use the search result in conjunction
with the query to generate source code for the programmer. Our investigation showed that, for small functions and
non-trivial code generations, REDCODER archives outstanding performance. We hypothesize that if we can hand
over trivial programming-related tasks to the machine, developers could focus their primary attention on solving
challenging problems, thus improving productivity. Currently, I am collaborating with RISElab from UC Berkeley to
extend the code search to find semantic clones across different programming languages.

Future Plan and Long Term Goal

Program Generation/Synthesis. Automated program generation/synthesis can help developers to a great extent to
increase productivity. The ever-changing landscape of APIs and libraries in modern API-driven software
development demands a steep learning curve for programmers. To each such burden, an automated program
synthesis/generation tool may help programmers. Such an automated tool can generate programs from a set of I/O
examples, a description of the task, etc. The current SOTA for machine generation of programs is far from perfect.
On the one hand, there is precise program synthesis with provable correctness. However, these programs are often
tailored towards the problem domain and do not scale well for general-purpose programs. On the other hand,
general-purpose source code generation often generates syntactically and semantically incorrect codes, hindering
their integration in automated programming. My future research goal is to bridge the gap between these two ends of

Page 3 of 5


https://saikatc.info
mailto:saikatc@cs.columbia.edu

Saikat Chakraborty
https://saikatc.info Email: saikatc(@cs.columbia.edu

the spectrum. In particular, I aim at building tools that can benefit from both ends of the spectrum. I aim at
collaborating with experts from the PL community to integrate provable syntactic and semantic correctness into
model-based general-purpose program generation. At the same time, I also aim at applying my experience and
expertise in modeling source code to build a holistic solution for general-purpose source code generation with a
provable correctness guarantee. In the longer term, I envision building IDE support with which developers,
especially novice developers, can take great advantage of auto-generated code.

Refining Cross-Lingual search with semantic matching. Similar to the evolving nature of libraries, programming
languages are also evolving rapidly. With the advent of newer and richer programming languages, cross-lingual code
search is becoming a significant challenge to solve [Matthews et al. 21]. In the presence of drastic differences
between syntax and semantics of different PLs, a very straightforward way to check cross-lingual similarity is to
compare them against a set of /O examples. However, such an approach comes with several significant hurdles.
First, not all the pieces of code will be executable. Thus we cannot compare it for I/O behavior. Second, running a
set of I/O for every search could be very expensive. I plan on working towards learning the alignment between code
syntax and semantics across different programming languages to solve these problems. I aim at developing models
where such alignment learning can be reinforced by the 1/0 behavior of part of training data. In particular, I aim to
learn syntactic and semantic alignment to maximize the I/O similarity. When fully trained, knowledge about I/O
behavior will be embedded in the model and thus will not require executing code in runtime. I aim to collaborate
with experts from Machine Learning, Information Retrieval, and Programming Languages to design such a system.

Ensuring security and trustworthiness of software systems. Digitization and dependence on automation make the
human race susceptible to security/privacy and trust violation. The distributed, independent, and layered architecture
of modern-day systems may raise vulnerable emergent behavior across the system as a whole, even when each
component in the system is independently tested for their respective service level agreements(SLA). For instance,
consider an IoT system automated home; the sensors, actuators, routers, servers are all independent layers of a
system. However, when such systems use shared resources (e.g., memory, network access), they may create
security/privacy attack backdoors due to the inconsistencies between layers. The multi-vendor nature of different
layers leaves room for confusion and makes it difficult to reach a consensus on the SLA. Such vulnerable emergent
behaviors are often not anticipated layers assembler and often identified in post-deployment. I aim at developing
ML-based systems to learn to anticipate such cross-layer vulnerabilities based on previously known vulnerabilities. I
aim at collaborating with experts from systems, security, privacy to solve such problems. In addition to cross-layer
vulnerability detection, I also aim at researching intra-layer vulnerability localization, drawing inspiration from
debugging. A central direction of my future research agenda is to precisely localize the bug reasoning about the
execution trace and program flow graphs. In particular, my goal is to draw inspiration from developers' way of
reasoning about "states" in an execution trace. I aim at collaborating with experts from testing and debugging to
attain such goals.

Design and development of IDE tools. My first-hand experience working/collaborating in the industry (Google,
Facebook, Fujitsu, IBM research) gave me a unique opportunity to experience the developers' needs. More precisely,
when used in an actual development environment, there are many things to consider. We first have to consider the
scalability, latency, overhead of a technique. For instance, if a code recommender (perhaps with excellent accuracy)
takes more time to predict an identifier than the developer would need, the developer might even turn off the feature.
Thus, the human component/user experience is a significant consideration while building such tools. In my future
research, I aim at researching to develop IDE tools for developers in close collaboration with the development team.
I aim to survey developers’ needs, how they behave while using specific features, and which part of the code/tool
they pay attention to. I also aim to learn their experience using a tool, what makes them use it, what demotivates
them, etc. With these motivations and lessons, I aim at building tools that developers could use in their day-to-day
programming activities. I aim at collaborating with experts from HCI and UX to improve the programmers’
experience using the ML-based systems I aim to build.

References
My papers

- JTSE-"20] CODIT: Code Edits with Tree-Based Machine Translation, S. Chakraborty, Y. Ding, M.
Allamanis, B. Ray, in IEEE Transactions on Software Engineering, 2020.

- ITSE °21] Deep Learning-based Vulnerability Detection: Are We There Yet? S. Chakraborty, R. Krishna,
Y. Ding, B. Ray, IEEE Transaction of Software Engineering, 2021.

Page 4 of 5


https://saikatc.info
mailto:saikatc@cs.columbia.edu
https://ieeexplore.ieee.org/abstract/document/9181462
https://ieeexplore.ieee.org/abstract/document/9448435

Saikat Chakraborty
https://saikatc.info Email: saikatc(@cs.columbia.edu

[ASE °21] On Multi-Modal Learning of Editing Source Code, S. Chakraborty, B. Ray, Accepted to be
published in The 36th IEEE/ACM International Conference on Automated Software Engineering.

[NAACL °21] A Unified Pre-training for Program Understanding and Generation, WU. Ahmad, S.
Chakraborty, B. Ray, K. Chang, Annual Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL), 2021.

[EMNILP °21] Retrieval Augmented Code Generation and Summarization, MDR. Parvez, WU. Ahmad, S.
Chakraborty, B. Ray, K. Chang, Findings of The 2021 Conference on Empirical Methods in Natural
Language Processing (EMNLP-findings), 2021.

[ACL °20] A transformer-based Approach for Source Code Summarization (short paper), WU. Ahmad, S.
Chakraborty, B. Ray, K. Chang, 58th Annual Meeting of the Association for Computational Linguistics
(ACL) 2020.

[ACL 18] Building Language Models for Text with Named Entities, R. Parvez, S. Chakraborty, B. Ray, K.
Chang, 56th Annual Meeting of the Association for Computational Linguistics (ACL) 2018.

[SCAM ’19] Toward Optimal Selection of Information Retrieval Models for Software Engineering Tasks,
MM. Rahman, S Chakraborty, G. Kaiser, B. Ray, 19th International Working Conference on Source Code
Analysis and Manipulation (SCAM) 2019.

[ICSE-Poster’18] Which similarity metric to use for software documents?: a study on information retrieval
based software engineering tasks. Md. Rahman, S. Chakraborty, and B. Ray, Poster at Proceedings of the
40th International Conference on Software Engineering: Companion Proceedings. ACM, 2018.

[Under Review] Contrastive Learning for Source Code with Structural and Functional Properties, Y. Ding,
L. Buratti, S. Pujar, A. Morari, B. Ray, S. Chakraborty, under review (arXiv preprint arXiv:2110.03868)

Related references

[Hindle ‘16] Hindle, A., Barr, E. T., Gabel, M., Su, Z., & Devanbu, P. (2016). On the naturalness of
software. Communications of the ACM, 59(5), 122-131.

[Ray ‘16] Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., & Devanbu, P. (2016, May). On the
"naturalness" of buggy code. In 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE) (pp. 428-439). IEEE.

[Nguyen ‘10] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen, “Recurring bug
fixes in object-oriented programs,” in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering-Volume 1. ACM, 2010, pp. 315-324.

[Nguyen ‘13] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan, “A study of
repetitiveness of code changes in software evolution,” in Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering. IEEE Press, 2013, pp. 180-190.

[Ray ‘15] B. Ray, M. Nagappan, C. Bird, N. Nagappan, and T. Zimmermann, ‘“The uniqueness of changes:
Characteristics and applications,” ser. MSR ’15. ACM, 2015.

[Chen °19] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noél Pouchet, Denys
Poshyvanyk, and MartinMonperrus. Sequencer: Sequence-to-sequence learning for end-to-end program
repair.IEEE Transactions onSoftware Engineering(TSE), 2019.

Page 5 of 5


https://saikatc.info
mailto:saikatc@cs.columbia.edu
https://arxiv.org/pdf/2108.06645.pdf
https://arxiv.org/pdf/2103.06333.pdf
https://arxiv.org/pdf/2108.11601.pdf
https://arxiv.org/pdf/2005.00653.pdf
https://arxiv.org/pdf/1805.04836.pdf'
https://ieeexplore.ieee.org/abstract/document/8930841
https://dl.acm.org/doi/abs/10.1145/3183440.3194997
https://arxiv.org/pdf/2110.03868.pdf

