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1 Introduction

Machine learning is revolutionizing the way we develop software. On the one hand, machine
learning models such as deep neural networks (DNNs) are increasingly being incorporated into
software, forming neurosymbolic systems. These programs are arising in safety-critical applications
such as robotics, as well as human-AI systems such as healthcare and judicial decision-making.
Simultaneously, programming assistants based primarily on large language models (LLMs) are
becoming ubiquitous, helping programmers write code, find bugs, and generate test suites. The
goal of my research is to design novel tools to make it easier to develop software in
the age of machine learning. It can be organized into three directions:

• Trustworthy neurosymbolic systems: How can we ensure that neurosymbolic systems
are trustworthy when they include intrinsically fallible components (i.e., machine learning
models)? We have designed novel techniques that can provide probabilistic guarantees for
neurosymbolic systems. Our techniques leverage uncertainty quantification to provide prob-
abilistic guarantees for individual machine learning components; then, they compose them to
obtain probabilistic guarantees for the overall system.

• Synthesizing neurosymbolic programs: Neurosymbolic programs can be significantly
harder to develop compared to traditional programs due to the fuzzy nature of machine learn-
ing models. How can we make it easier to write neurosymbolic programs? Unlike traditional
programming, where the specification is binary (either satisfied or not), in neurosymbolic
programming, the specification is typically an objective function (e.g., accuracy). We have
developed novel optimal synthesis algorithms that efficiently traverse the search space to
identify the neurosymbolic program that optimizes a user-provided objective.

• Machine learning for programmer productivity: How can machine learning improve
programmer productivity? How can we do so while ensuring the resulting code is trustworthy?
We have leveraged machine learning in a number of programmer productivity tools including
program synthesis, optimization, verification, and testing. In addition, we have worked on
tools for rigorously quantifying the uncertainty of code completion models.

2 Trustworthy Neurosymbolic Systems

A key challenge to building trustworthy systems out of machine learning components is that these
components are naturally error prone—e.g., we can never guarantee that a DNN object detector
correctly detects every obstacle in front of a robot. Uncertainty quantification is a promising
solution: if a machine learning component is uncertain, then the system can act more conservatively
to maintain safety. For instance, a robot can act conservatively when the DNN is unsure if there
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is an obstacle. We have developed a number of techniques for uncertainty quantification that
come with probabilistic correctness guarantees. Typical uncertainty quantification techniques make
the i.i.d. assumption that the training and test distributions are identical (or the closely related
exchangeability assumption); thus, we have also designed techniques for detecting and mitigating
the impact of distribution shift. Finally, we have designed algorithms inspired by these techniques
for offline reinforcement learning, which can enable learning in a safe way from large-scale batch
data without requiring potentially dangerous interactions with the environment.

Conformal prediction for neurosymbolic systems. Conformal prediction is a collection of
techniques from statistics for quantifying predictive uncertainty by modifying an underlying model
to output sets of labels instead of individual labels [1]. These algorithms come with coverage guar-
antees—in particular, under the assumption that the training and test distribution are identical, the
prediction sets are guaranteed to contain the ground truth label with high probability. For build-
ing trustworthy neurosymbolic programs, conformal prediction has several advantages compared
to more traditional techniques for uncertainty quantification that predict a probability for each
label (e.g., calibrated prediction). First, prediction sets tend to be easier to incorporate into exist-
ing software compared to probabilities (e.g., a traditional robot planning algorithm can avoiding
prediction sets of obstacles, whereas planning under probabilistic predictions requires modifying
the planning algorithm). In addition, the coverage guarantee often translates directly to safety
guarantees for the overall system (e.g., a robot may be guaranteed to avoid obstacles with high
probability), whereas guarantees provided for predicted probabilities are less interpretable.

Our recent work has demonstrated how techniques from learning theory can be used to design
conformal prediction algorithms that come with probably approximately correct (PAC) guaran-
tees [2]. Our work was also the first to demonstrate how conformal prediction can be applied
to deep neural networks including ResNet [3], and there has been a great deal of subsequent in-
terest in combining conformal prediction and deep learning [4, 5]. In follow up work, we have
demonstrated how coverage guarantees provided by conformal prediction can be used to provide
probabilistic guarantees for broader neurosymbolic programs. For instance, we have combined it
with model predictive shielding—a safe reinforcement learning algorithm we developed in our prior
work [6, 7, 8]—to enable safe reinforcement learning from visual observations, where a reinforcement
learning agent uses a DNN policy to directly map images to control inputs [9]. In another line of
work, we have shown how to build conformal prediction sets for large language models and compose
them to provide probabilistic guarantees for retrieval augmented question answering [10]. Finally,
in ongoing work, we have worked on extending these techniques to general program compositions
by using abstract interpretation to propagate prediction sets through the program [11].

Uncertainty quantification under distribution shift. Traditional algorithms for uncertainty
quantification, including both conformal and calibrated prediction, rely heavily on the i.i.d. assump-
tion that the training and test distributions are identical (or the slightly weaker exchangeability
assumption). In many real-world settings, these assumptions break down—e.g., a robot operating
in a changing environment or a machine learning model deployed in a new hospital with a different
patient population. Thus, in addition to quantifying uncertainty under the i.i.d. assumption, we
need to detect when this assumption fails. We consider the unsupervised domain adaptation setting
(i.e., we have unlabeled examples from a shifted test distribution), which holds in many settings
since the system can observe the inputs for which it needs predicted outputs. Then, we propose
to use classifier based tests to detect shifts in the covariate distribution [12]. Intuitively, the idea
is to train a DNN to distinguish the training and test inputs. If they can be distinguished, then a

2



shift has definitely occurred; for instance, if we can reliably predict whether an image came from a
robot’s training or test environment, then the two environments cannot be identically distributed.
While the converse is not true due to limitations of the DNN (i.e., there may be a shift even if the
DNN does not detect one), the effectiveness of DNNs at prediction minimizes this risk.

We can also use the DNN classifier for uncertainty quantification under distribution shift. Intu-
itively, the DNN prediction probability can be used to derive importance weights, which quantify the
degree of shift for individual inputs. These weights can be used to adjust uncertainty quantification
to match the shifted test distribution. We have proposed both calibrated [13] and conformal [14]
prediction algorithms for the covariate shift setting. In addition, we have proposed conformal pre-
diction algorithms for the label shift setting [15], the meta-learning setting [16], and the online
adversarial setting [17]. These algorithms can be combined with the approaches described above
to provide guarantees for neurosymbolic programs under distribution shift.

Safe offline reinforcement learning. While distribution shift affects many real-world systems,
it is a particularly important challenge in reinforcement learning, where changes to the control
policy naturally cause a shift in the distribution of visited states. These challenges are particularly
pertinent in offline reinforcement learning, where the goal is to learn from a large-scale offline
dataset (e.g., collected by observing humans completing tasks in the world) without any online
interaction. One way to mitigate distribution shift in offline reinforcement learning is to modify the
objective to ensure the agent visits a similar state distribution as the offline dataset—e.g., using
a KL divergence constraint. We have demonstrated how to extend this strategy to learning from
visual observations in the goal-conditioned setting [18, 19], a prerequisite for training foundation
models for control. When applied to large-scale human video data, these techniques have produced
foundation models capable of solving novel tasks from minimal specifications in the form of either
a handful of demonstrations [20] or natural language [21]; these techniques can solve tasks such as
folding cloth or grasping complicated objects from just a few demonstrations. We have also shown
how long-horizon tasks can be automatically decomposed into shorter tasks using our foundation
models [22], and developed risk-sensitive offline reinforcement learning algorithms to train agents
that act conservatively in the face of uncertainty [23]. Finally, we have demonstrated how offline
reinforcement learning can be used as a fundamental building block to enable reinforcement learning
with safe exploration. Intuitively, we can iteratively use the current policy to safely collect data, and
then train a new safe policy based on the new data. Our approach comes with safety guarantees in
the finite state setting [24], and performs well empirically for continuous state and action spaces [25].

3 Synthesizing Neurosymbolic Programs

In traditional programming, there is typically a notion of correctness that the program should
satisfy (which can be formally encoded as a logical specification). In contrast, in neurosymbolic
programming, the system may make mistakes due to errors in the machine learning components.
Thus, the specification must somehow account for the possibility for errors. A standard way to do
so is to instead provided a quantitative objective such as the accuracy that the program should
optimize. However, optimizing such objectives tends to be challenging for programmers, since they
need to understand the performance properties of individual machine learning components as well as
how different components may interact with one another. As a consequence, there is an important
need for algorithms to automatically synthesize neurosymbolic programs. We propose neurosym-
bolic synthesis algorithms for various settings. First, focusing on neurosymbolic programs designed
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to query unstructured data, we propose efficient synthesis algorithms targeting the programming-
by-examples setting that are guaranteed to return the optimal program on the given examples. In
addition, we have proposed techniques for adapting these techniques to synthesizing neurosymbolic
programs that implement control policies in the reinforcement learning setting.

Querying unstructured data. One important category of neurosymbolic programs arises when
users seek to write queries over unstructured data such as text or images. In these cases, a nat-
ural strategy is to use machine learning components to predict structure in the data (e.g., entity
recognition, object detection, etc.), and then query the resulting structure using traditional com-
ponents. We have designed algorithms for automatically synthesizing queries over unstructured
data in several domains, including extracting information from websites, where LLMs are used to
match keywords of interest [26], and identifying events in video camera data, where object trackers
are used to identify trajectories in the data [27, 28]. For instance, our algorithms might be used
to help a data scientist automatically identify intersections where pedestrians frequently cross the
street. These algorithms provably find the program that optimize a user-provided objective.

Subsequently, we have designed a general-purpose algorithm for efficiently synthesizing optimal
programs that can be applied to queries in a given domain-specific language (DSL) [29]. This
work builds on our prior work on program synthesis [30], where we use deductive reasoning to
prove that certain branches of the search tree of programs are infeasible. In optimal synthesis,
we instead use abstract interpretation to compute upper bounds on the objective value of a given
branch of the search space; these upper bounds can similarly be used to prune the search space if
a program exceeding that upper bound has already been identified. In our neurosymbolic setting,
this approach is two orders of magnitude faster than SMT-based approaches to optimal synthesis.

Program synthesis for reinforcement learning. Another setting where neurosymbolic pro-
gramming can be an effective strategy is reinforcement learning. In particular, our work has
demonstrated that by training control policies in the form of programs instead of end-to-end neu-
ral networks, we can obtain policies that are more interpretable [31], generalize more robustly to
out-of-distribution scenarios [32], and are easier to formally verify [33, 34]. For instance, we have
trained a provably correct decision tree policy for a toy game of Pong [33], which to the best of our
knowledge is the first formally verified closed-loop guarantee for a learned policy. A particular chal-
lenge for formal verification in control is that the environment itself often differs from one problem
instance to another. For example, we may want a control policy that can drive safely on a variety
of different road configurations. Our work has demonstrated how neurosymbolic policies can solve
this problem [34]. We have designed policies that are composed from primitive neural policies in
a way that mirrors the geometry of the road; in particular, each neural policy is associated with
a road segment such as a straight or a turn. Furthermore, we have proven that each neural pol-
icy solves its portion of the road in a way that is compatible across different policies. Thus, our
compositional policy can provably drive safely on any road geometry obtained by composing these
primitive pieces. This strategy paves the way for formal methods to apply to guaranteeing safety
in variable environments, a key challenge for formally verified reinforcement learning.

Programs have also proven effective for reinforcement learning in other ways. For instance, our
recent work has demonstrated how large language models (LLMs) can be leveraged to synthesize
reward functions for reinforcement learning. In particular, reward functions are typically imple-
mented as Python code, so we may naturally expect LLMs for code to be able to generate reward
functions. Our approach additionally leverages feedback from the simulator to iteratively improve
the given reward function. We demonstrate that our strategy outperforms human-written reward
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functions on a benchmark of dexterous manipulation tasks [35], and have additionally demonstrated
how it can be used to train a real-world robot dog (in particular, the Unitree Go1) to walk [36].

Specification-guided reinforcement learning. In many scenarios, the user has prior knowledge
of the high-level structure of the task they would like to solve. We have developed a specification
language enabling users to provide a formal specification encoding this structure, which helps guide
the reinforcement learning algorithm to solve the task more effectively [37]. Then, we can use
reinforcement learning to automatically train low-level control policies that implement primitives
in the specification. For instance, the specification might indicate a sequence of subtasks the
robot needs to complete, in which case our framework would train a neural policy to solve each
subtask. In addition, we have designed an algorithm for training these policies in an effective way
by interweaving high-level planning and low-level reinforcement learning [38, 39]. By leveraging
the high-level structure as guidance, we can efficiently learn to solve long-horizon tasks that are
challenging for traditional, end-to-end reinforcement learning. Our experiments demonstrate that
our approach can achieve significantly better performance at complex, long-horizon grasping and
navigation tasks compared to state-of-the-art end-to-end reinforcement learning algorithms.

4 Machine Learning for Programmer Productivity

We have worked on using machine learning to improve programmer productivity tools, including
program synthesizers [30, 40], program optimizers [41], program verifiers [42], and fuzz testers [43].
In particular, machine learning is incorporated to guide search over a large space—e.g., programs
in program synthesis, proof strategies in program verification, and inputs in fuzz testing.

Reinforcement learning for program synthesis. There has been a great deal of success in
using machine learning to improve program synthesis. The basic strategy is to use a pretrained
machine learning model to determine the search order—e.g., when searching over a space of pos-
sible programs given by a context-free grammar, we can use the model to choose the most likely
production to use to expand a nonterminal in the search tree. However, this strategy has the short-
coming that the model cannot be adapted to features of the current problem. Deep reinforcement
learning is a natural solution to this problem: thinking of the machine learning model as a control
policy (i.e., deciding what branch of the search space to try next), we can use feedback from the
search procedure to generate policy gradient updates to the machine learning model, enabling it to
learn strategies specialized to the current program. While this strategy works well, we can further
improve performance by more tightly coupling the symbolic search with the reinforcement learning
algorithm. In particular, symbolic search typically uses deductive reasoning (e.g., an SMT solver)
to help prune infeasible branches of the search space. We have demonstrated how feedback from
deductive reasoning (e.g., the UNSAT core produced by an SMT solver) can be used to improve
the policy gradient update [40]. In particular, we can incorporate any additional programs ruled
out by deductive reasoning as off-policy information in the policy gradient update, enabling the
machine learning model to learn to reduce the likelihood of these kinds of programs as well. Our
experiments show that our strategy improves synthesis time by 8.71× compared to prior work.

Large language models for program optimization. More recently, large language models
(LLMs) have significantly advanced the capabilities of machine learning in the code domain by
enabling them to understand complex program logic. In our recent work on program optimization,
we have benchmarked various techniques for leveraging LLMs to optimize programs [41]. The
basic idea is to give the LLM a program as input, and ask it to produce an optimized version
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of that program as output. This can be achieved using either blackbox prompting techniques
(e.g., in-context learning, chain-of-thought prompting, etc.), or by finetuning the model. We found
dynamic in-context learning (i.e., retrieve similar examples) to be especially effective in the blackbox
setting. In the finetuning setting, one surprising challenge is that näıvely training on slow-fast
program pairs does not produce very good results. Intuitively, the reason is that the model cannot
distinguish between “bad” vs. “good” slow-fast pairs (i.e., ones with a small vs. large speedup).
One simple solution is to train only on slow-fast pairs with a large speedup. However, we found that
a more effective solution is to actually provide the speedup as part of the input to the model—i.e.,
the input is the pair of the original program and the speedup, and the output is the optimized
program. Intuitively, by conditioning on the speedup achieved, the model can determine which
kinds of changes lead to what level of speedup. Then, during inference, we ask the model for the
largest speedup possible. For CodeLlama-13B, our approach produced an average speedup of 5.65×
compared to the baseline speedup of 2.71×, demonstrating the effectiveness of this approach.

Uncertainty quantification for code generation. One of the main challenges using LLMs for
code generation is the lack of trust in the generated code. We have proposed to use uncertainty
quantification to mitigate this problem. A key issue because code is a structured output, näıve
prediction sets have the potential to be very large. To address this issue, we have designed al-
gorithms for inferring prediction sets that can be represented in a compact, structured form [44].
For example, for code generation, a prediction set can be represented by a partial program, which
implicitly represents the set of all completions of that partial program. Even if this set is large, the
partial program provides an interpretable representation of uncertainty in the predicted program.

5 Conclusions and Future Work

My research has laid the foundation for trustworthy neurosymbolic programming by developing
uncertainty quantification as a tool to specify probabilistic correctness for machine learning com-
ponents. These individual guarantees can then be composed to form guarantees for the overall
program. Simultaneously, my work on optimal program synthesis has automated the development
of neurosymbolic programs, while providing rigorous guarantees on the optimality of the resulting
program. These techniques can significantly improve our ability to build trustworthy neurosymbolic
programs as machine learning components become increasingly pervasive in real-world systems.

My ongoing work on neurosymbolic programming aims to make it easier to develop neurosym-
bolic programs in other ways. One key challenge is that while neurosymbolic programs tend to
be highly parallelizable, actually exposing this parallelism can be quite challenging when they are
written in general purpose programming languages such as Python. We are working on a novel
language based on lambda calculus for writing neurosymbolic programs [45]. Because this language
is pure by design, it can automatically be evaluated in a fully parallel way. We show that rewriting
programs in our language can improve performance by an order of magnitude—e.g., our implemen-
tation of tree-of-thought prompting runs 4.8× speedup compared to the original implementation.

We are also working on better foundation models for code, which can improve the usability of
machine learning across the software development pipeline. Building on our work on performance
conditioned finetuning for program optimization, we are training models that are conditioned on a
large variety of information about the program—e.g., the libraries it uses, the syntactic expressions
used, measures of code quality, etc. Our early results suggest that these kinds of models can provide
programmers with significantly greater control over the constructs used in the generated code.
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