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Programming errors or bugs are omnipresent in critical areas of Computer Science ranging from device
drivers to real-time systems to hardware designs, and have lead to economic loss as well as loss of human
lives. The Pentium FDIV bug, ARIANE failure, or Therac-25 accident are among several of the horror
stories caused by software or hardware bugs. My research focuses on developing techniques that improves
the reliability of programs written in various levels of design abstraction for both hardware and software.
Purely from a cost point of view, ensuring reliability is increasingly challenging in the domain of hardware
designs, due to the growing size, heterogeneity, and cost of redesign of System on Chip (SOC). Furthermore,
the reliability issues in turn makes the design process from initial specification to chip fabrication increasingly
complex. However, the growing complexity provides incentive for designers to shift toward using high-level
languages such as C, SystemC, and SystemVerilog to do system-level design. While a major goal of these
high-level languages is to enable verification at a higher level of abstraction, allowing early exploration of
system-level designs, the focus so far has been on traditional testing techniques such as random testing and
scenario-based testing.
Recently, approaches inspired by formal methods have emerged as an alternative way to ensure the correctness
of high-level designs, overcoming several of the limitations found in traditional testing techniques. Moreover,
advances in the area of SAT solvers, automated theorem provers, and model checking techniques have
allowed researchers to formally verify many properties of real systems. For example, modern approaches can
frequently check for the absence of deadlocks and assertion violations in large designs, thereby increasing
the overall reliability.
My dissertation focuses on high-level verification of system designs. In this work, I envision a design method-
ology that relies upon advances in synthesis techniques as well as on incremental refinement of design process.
These refinements can be done manually or through elaboration tools. My work addresses verification of
specific properties in high-level languages as well as checking that the refined implementations are equivalent
to their high-level specifications. In this direction, I have worked on various techniques that improve the
current state of the art. The novelty of each of these techniques is that they use a combination of formal
techniques to do scalable verification of system designs completely automatically.
More interestingly, the approaches in my thesis show that practical and useful tools can be built by in-
telligently combining various simple fundamental techniques (like divide and conquer, concurrent program
analysis, compositional design, relational approach, theorem proving, model checking, static analysis and
dynamic analysis) from different areas of Computer Science. Furthermore, these approaches are not limited
to only high-level verification, and can be adapted to a wide variety of areas, such as program analysis,
software engineering, compiler design, design automation, and security.

High-Level Verification of System Designs

My work falls into two categories: (a) methods for verifying properties of high-level designs and (b) methods
for verifying that the translation from high-level design to low-level Register Transfer Language (RTL)
preserves semantics. Taken together, these two parts guarantee that properties verified in the high-level
design are preserved through the translation to low-level RTL. By performing verification on the high-level
design, where verification is easier to perform, and then checking that all refinement steps are correct, we
expand hardware development methodology to provide strong and expressive guarantees that are difficult to
achieve by directly analyzing the low-level RTL code.

Property Verification of High-Level Designs. Starting with a high-level design, we use model checking
techniques to verify that the design satisfies a given property such as absence of deadlock or assertion
violation. Model checking in its pure form suffers from the well-known state explosion problem. To cope
with the state explosion, some systems give up completeness of the search and focus on the bug finding



capabilities of model checking. This line of thought lead to execution-based model checking approach,
which for a given test input and depth, systematically explores all possible behaviors of the design (due to
asynchronous concurrency). The most striking benefit of execution-based model checking approach is that it
can analyze feature-rich programming languages like C++, as it sidesteps the need to formally represent the
semantics of the programming language as a transition relation. Another key aspect of this approach is the
idea of stateless search, meaning it stores no state representations in memory but only information about
which transitions have been executed so far. Although stateless search reduces the storage requirements, a
significant challenge for this approach is how to handle the exponential number of paths in the program. To
address this, one can use dynamic partial-order-reduction (POR) techniques to avoid generation of two paths
that have the same effect on the design’s behavior. Intuitively, POR techniques exploit the independence
between parallel threads to search a reduced set of paths and still remain provably sufficient for detecting
deadlocks and assertion violations.
We implemented Satya [6], a novel query-based model checking framework that combines static and dynamic
POR techniques along with high-level semantics of SystemC to intelligently explore all possible behaviors
of a SystemC design. We reduce the runtime overhead by computing the dependency information statically
and using it during runtime, without significant loss of precision. In our experiments Satya was able
to automatically find an assertion violation in the FIFO benchmark (distributed as a part of the OSCI
repository), which may not have been found by simulation.
Another approach for model checking is to use symbolic algorithms that manipulate sets of states instead
of individual states. These algorithms avoid ever building the graph for the system; instead, they represent
the graph implicitly using a formula in propositional logic. Bounded Model Checking (BMC) is one such
algorithm that unrolls the control flow graph (loop) for a fixed number of steps (say k) and checks whether
a property violation can occur in k or fewer steps. This typically involves encoding the bounded model as
an instance of Satisfiability (SAT) problem. This problem is then solved using a SAT or SMT (Satisfiability
Modulo Theory) solver. A key challenge for BMC is to generate efficient verification conditions that can be
easily solved using the appropriate solver.
We developed a new symbolic method [2], which combines POR with an asynchronous modeling approach
that generate verification conditions directly without an explicit scheduler. We introduce the notion of
Mutually Atomic Transactions (MAT): two transactions are mutually atomic when there exists exactly one
conflicting shared-access pair between them. Previous approaches add interleaving constraints between all
pairwise global accesses, thereby allowing redundant interleavings. We reduce the verification conditions
by allowing pairwise interleaving constraints only between MATs. Our experimental results show that our
approach improves the current state of the art both in performance and in size of the verification condition [2].

Verifying the synthesis from high-level design to low-level RTL. Once the important properties of
the high-level components have been verified, the translation from the high-level design to low-level RTL still
needs to be proven correct, thereby also guaranteeing that the important properties of the components are
preserved. High-Level Synthesis (HLS) is the process that transforms a high-level design, usually expressed
in languages like C, C++, or Java, to a low-level RTL design. One approach to prove that the translation
from high-level design to low-level RTL is correct is to show – for each translation that the HLS tool performs
– the output program produced by the tool has the same behavior as the original program. This technique
is called Translation validation. Although this approach does not guarantee that the HLS tool is bug free, it
does guarantee that any errors in translation will be caught when the tool runs, preventing such errors from
propagating any further down the hardware fabrication process.
We developed a translation validation algorithm [1, 7, 5] that uses a bisimulation relation approach to
automatically prove the equivalence between two concurrent systems. We implemented our algorithm in a
system called ARCCoS and used it to validate the synthesis process of Spark, a parallelizing HLS framework.
ARCCoS validates all the phases (except for parsing, binding and code generation) of Spark against the initial
behavioral description. Furthermore, our experiments showed that with only a fraction of the development
cost of Spark, our algorithm can validate the translations performed by Spark, and it even uncovered two
previously unknown bugs that eluded testing and long-term use.



Another approach to guarantee the translation from high-level design to low-level RTL is correct, is by
proving the HLS tool itself correct. Unlike translation validation, this approach proves the correctness of
an HLS tool once and for all, before it is ever run. Because some of the most error prone parts of an
HLS tool are its optimizations, we developed a technique that proves the correctness of optimizations using
Parametrized Equivalence Checking (PEC) [4]. Furthermore, our approach is not limited to only HLS tools;
it can be used for any domain that transforms an input program using semantics-preserving optimizations,
such as optimizers, compilers, and assemblers.
The PEC technique is a generalization of translation validation that proves the equivalence of parameterized
programs. A parameterized program is a partially specified program that can represent multiple concrete
programs. For example, a parameterized program may contain a section of code whose only known property
is that it does not modify certain variables. To highlight the power of PEC, we designed a language for im-
plementing complex optimizations using many-to-many rewrite rules, and used this language to implement a
variety of optimizations including software pipelining, loop unrolling, loop unswitching, loop interchange, and
loop fusion. Using our PEC implementation, we were able to automatically verify that all the optimizations
we implemented in our language preserve program behavior.

Moving Forward

In the future almost every aspect of our day-to-day activities will involve devices that contains interacting
hardware and software components as well as interfaces to the physical world. As these components get
more and more complex, their design will become increasingly difficult. For example, a moderately complex
cyber-physical system may in the end require generating software code in C and Java, network code in Ruby,
hardware code in VHDL, glue code in Python, and a web interface in JavaScript. My broader research goal
is to build next-generation design tools (like synthesis, analysis, and compilation tools) for such complex
systems. Within this domain, in the near term I would like to broadly work in the following areas.

Automatic Reliable Design Tools. A major issue with most design tools is that these tools are hard and
inconvenient to use, and even harder to modify or extend. Thus, each time a new methodology is proposed a
new tool has to be written, often from scratch. Furthermore, their reliability has always been a concern for
both the tool developer and user. Unfortunately, building reliable design tools is difficult, error-prone, and
requires significant manual effort. Indeed, it takes a long time to develop a mature design tool that is stable
enough for broad adoption (often up to a decade), which in turn hinders the development of new designs and
increases their time-to-market. Building upon my experience on implementation and verification of various
design tools such as HLS and compilers, I would like to develop a modular and reusable framework that can
be used to quickly prototype new ideas in a reliable manner and can also be extended easily by users.

Automatic Concurrent Program Analysis Tools. Another interesting challenge for design tools is to
exploit and also help the designs to exploit the massive amount of concurrency offered by the hardware. One
of the major problems in this area stems from the presence of multiple threads of control, which can lead to
subtle and often unanticipated interactions between components. For instance, issues such as interference,
race conditions, deadlock, and livelock are particularly important in this domain. Furthermore, the fact
that many concurrent systems, such as hardware designs, operating systems and databases, are reactive,
adds to the complexities in this area. Although, many commercial concurrent program analysis tools have
become available, their adoption is in the early stages and the tools are often limited in the quality of the
results and the kinds of correctness guarantees they can provide. Based on my experience with various
reduction techniques like partial-order reduction, symmetry reduction and transactions, I would like to build
an automatic and scalable analysis framework that can accurately account for the various complexities of
concurrency. Here again my main focus will be to develop an extensible and reusable framework, which will
allow user-defined properties and domain-specific reductions to be easily incorporated.

My research will allow us to build reliable and extensible frameworks that analyze and design complex
hardware-software systems, thereby bridging the gap between software engineering and design automation.
The challenges are very exciting, and I feel pursuing a career in this area will fulfill my ambition.
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